Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Overview

ood-text-emnlp

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Files

  • fine_tune.py is used to finetune the GPT-2 models, and roberta_fine_tune.py is used to finetune the Roberta models.
  • perplexity.py and msp_eval.py is used to find the PPLs and MSPs of a dataset pair's exxamples using the finetuned model.

How to run

These steps show how to train both density estimation and calibration models on the MNLI dataset, and evaluated against SNLI.

A differet dataset pair can be used by updating the approriate dataset_name or id_data/ood_data values as shown below:

Training the Density Estimation Model (GPT-2)

Two options:

  1. Using HF Datasets -
    python fine_tune.py --dataset_name glue --dataset_config_name mnli --key premise --key2 hypothesis
    
    This also generates a txt train file corresponding to the dataset's text.
  2. Using previously generated txt file -
    python fine_tune.py --train_file data/glue_mnli_train.txt --fname glue_mnli"
    

Finding Perplexity (PPL)

This uses the txt files generated after running fine_tune.py to find the perplexity of the ID model on both ID and OOD validation sets -

id_data="glue_mnli"
ood_data="snli"
python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${ood_data}_val.txt --fname ${id_data}_$ood_data

python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${id_data}_val.txt --fname ${id_data}_$id_data

Training the Calibration Model (RoBERTa)

Two options:

  1. Using HF Datasets -

    id_data="mnli"
    python roberta_fine_tune.py --task_name $id_data --output_dir /scratch/ua388/roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data
    
  2. Using txt file generated earlier -

    id_data="mnli"
    python roberta_fine_tune.py --train_file data/mnli/${id_data}_conditional_train.txt --val_file data/mnli/${id_data}_val.txt --output_dir roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data"
    

    The *_conditional_train.txt file contains both the labels as well as the text.

Finding Maximum Softmax Probability (MSP)

Two options:

  1. Using HF Datasets -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --dataset_name $ood_data --fname ${id_data}_$ood_data
    
  2. Using txt file generated earlier -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --val_file data/${ood_data}_val.txt --fname ${id_data}_$ood_data --save_msp True
    

Evaluating AUROC

  1. Compute AUROC of PPL using compute_auroc in utils.py -

    id_data = 'glue_mnli'
    ood_data = 'snli'
    id_pps = utils.read_model_out(f'output/gpt2/{id_data}_{id_data}_pps.npy')
    ood_pps = utils.read_model_out(f'output/gpt2/{id_data}_{ood_data}_pps.npy')
    score = compute_auroc(id_pps, ood_pps)
    print(score)
    
  2. Compute AUROC of MSP -

     id_data = 'mnli'
     ood_data = 'snli'
     id_msp = utils.read_model_out(f'output/roberta/{id_data}_{id_data}_msp.npy')
     ood_msp = utils.read_model_out(f'output/roberta/{id_data}_{ood_data}_msp.npy')
     score = compute_auroc(-id_msp, -ood_msp)
     print(score)
    
Owner
Udit Arora
CS grad student at NYU
Udit Arora
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022