PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Related tags

Deep LearningBAS
Overview

Background Activation Suppression for Weakly Supervised Object Localization

PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''. This repository contains PyTorch training code, inference code and pretrained models.

📋 Table of content

  1. 📎 Paper Link
  2. 💡 Abstract
  3. Motivation
  4. 📖 Method
  5. 📃 Requirements
  6. ✏️ Usage
    1. Start
    2. Download Datasets
    3. Training
    4. Inference
  7. 📊 Experimental Results
  8. ✉️ Statement
  9. 🔍 Citation

📎 Paper Link

Background Activation Suppression for Weakly Supervised Object Localization (link)

  • Authors: Pingyu Wu*, Wei Zhai*, Yang Cao
  • Institution: University of Science and Technology of China (USTC)

💡 Abstract

Weakly supervised object localization (WSOL) aims to localize the object region using only image-level labels as supervision. Recently a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve the localization task. Existing FPM-based methods use cross-entropy (CE) to evaluate the foreground prediction map and to guide the learning of generator. We argue for using activation value to achieve more efficient learning. It is based on the experimental observation that, for a trained network, CE converges to zero when the foreground mask covers only part of the object region. While activation value increases until the mask expands to the object boundary, which indicates that more object areas can be learned by using activation value. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint module (AMC) is designed to facilitate the learning of generator by suppressing the background activation values. Meanwhile, by using the foreground region guidance and the area constraint, BAS can learn the whole region of the object. Furthermore, in the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets.

Motivation


Motivation. (A) The entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask. To illustrate the generality of this phenomenon, more examples are shown in the subfigure on the right. (B) Experimental procedure and related definitions. Implementation details of the experiment and further results are available in the Supplementary Material.

Exploratory Experiment

We introduce the implementation of the experiment, as shown in Fig. \ref{Exploratory Experiment} (A). For a given GT binary mask, the activation value (Activation) and cross-entropy (Entropy) corresponding to this mask are generated by masking the feature map. We erode and dilate the ground-truth mask with a convolution of kernel size $5n \times 5n$, obtain foreground masks with different area sizes by changing the value of $n$, and plot the activation value versus cross-entropy with the area as the horizontal axis, as shown in Fig. \ref{Exploratory Experiment} (B). By inverting the foreground mask, the corresponding background activation values for the foreground mask area are generated in the same way. In Fig. \ref{Exploratory Experiment} (C), we show the curves of entropy, foreground activation, and background activation with mask area. It can be noticed that both background activation and foreground activation values have a higher correlation with the mask compared to the entropy. We show more examples in the Supplementary Material.


Exploratory Experiment. Examples about the entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask.

📖 Method


The architecture of the proposed BAS. In the training phase, the class-specific foreground prediction map $F^{fg}$ and the coupled background prediction map $F^{bg}$ are obtained by the generator, and then fed into the activation map constraint module together with the feature map $F$. In the inference phase, we utilize Top-k to generate the final localization map.

📃 Requirements

  • python 3.6.10
  • torch 1.4.0
  • torchvision 0.5.0
  • opencv 4.5.3

✏️ Usage

Start

git clone https://github.com/wpy1999/BAS.git
cd BAS

Download Datasets

Training

We will release our training code upon acceptance.

Inference

To test the CUB models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd CUB
python BAS_inference.py --arch vgg

To test the ILSVRC models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd ILSVRC
python BAS_inference.py --arch vgg

📊 Experimental Results



✉️ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

🔍 Citation

@inproceedings{BAS,
  title={Background Activation Suppression for Weakly Supervised Object Localization},
  author={Pingyu Wu and Wei Zhai and Yang Cao},
  booktitle={xxx},
  year={2021}
}
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022