Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Overview

Enhanced Particle Swarm Optimization (PSO) with Python

GitHub license GitHub issues

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social learning coefficients and maximum velocity of the particle.

Dependencies

  • Numpy
  • matplotlib

Utilities

Once the installation is finished (download or cloning), go the pso folder and follow the below simple guidelines to execute PSO effectively (either write the code in command line or in a python editor).

>>> from pso import PSO

Next, a fitness function (or cost function) is required. I have included four different fitness functions for example purposes namely fitness_1, fitness_2, fitness_3, and fitness_4.

Fitness-1 (Himmelblau's Function)

Minimize: f(x) = (x2 + y - 11)2 + (x + y2 - 7)2

Optimum solution: x = 3 ; y = 2

Fitness-2 (Booth's Function)

Minimize: f(x) = (x + 2y - 7)2 + (2x + y - 5)2

Optimum solution: x = 1 ; y = 3

Fitness-3 (Beale's Function)

Minimize: f(x) = (1.5 - x - xy)2 + (2.25 - x + xy2)2 + (2.625 - x + xy3)2

Optimum solution: x = 3 ; y = 0.5

Fitness-4

Maximize: f(x) = 2xy + 2x - x2 - 2y2

Optimum solution: x = 2 ; y = 1

>>> from fitness import fitness_1, fitness_2, fitness_3, fitness_4

Now, if you want, you can provide an initial position X0 and bound value for all the particles (not mandatory) and optimize (minimize or maximize) the fitness function using PSO:

NOTE: a bool variable min=True (default value) for MINIMIZATION PROBLEM and min=False for MAXIMIZATION PROBLEM

>>> PSO(fitness=fitness_1, X0=[1,1], bound=[(-4,4),(-4,4)]).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [3.0000078, 1.9999873]

OPTIMUM FITNESS
  > 0.0

When fitness_4 is used, observe that min=False since it is a Maximization problem.

>>> PSO(fitness=fitness_4, X0=[1,1], bound=[(-4,4),(-4,4)], min=False).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [2.0, 1.0]

OPTIMUM FITNESS
  > 2.0

Incase you want to print the fitness value for each iteration, then set verbose=True (here Tmax=50 is the maximum iteration)

>>> PSO(fitness=fitness_2, Tmax=50, verbose=True).execute()

You will see the following similar output:

Iteration:   0  | best global fitness (cost): 18.298822
Iteration:   1  | best global fitness (cost): 1.2203953
Iteration:   2  | best global fitness (cost): 0.8178153
Iteration:   3  | best global fitness (cost): 0.5902262
Iteration:   4  | best global fitness (cost): 0.166928
Iteration:   5  | best global fitness (cost): 0.0926638
Iteration:   6  | best global fitness (cost): 0.0926638
Iteration:   7  | best global fitness (cost): 0.0114517
Iteration:   8  | best global fitness (cost): 0.0114517
Iteration:   9  | best global fitness (cost): 0.0114517
Iteration:   10 | best global fitness (cost): 0.0078867
Iteration:   11 | best global fitness (cost): 0.0078867
Iteration:   12 | best global fitness (cost): 0.0078867
Iteration:   13 | best global fitness (cost): 0.0078867
Iteration:   14 | best global fitness (cost): 0.0069544
Iteration:   15 | best global fitness (cost): 0.0063058
Iteration:   16 | best global fitness (cost): 0.0063058
Iteration:   17 | best global fitness (cost): 0.0011039
Iteration:   18 | best global fitness (cost): 0.0011039
Iteration:   19 | best global fitness (cost): 0.0011039
Iteration:   20 | best global fitness (cost): 0.0011039
Iteration:   21 | best global fitness (cost): 0.0007225
Iteration:   22 | best global fitness (cost): 0.0005875
Iteration:   23 | best global fitness (cost): 0.0001595
Iteration:   24 | best global fitness (cost): 0.0001595
Iteration:   25 | best global fitness (cost): 0.0001595
Iteration:   26 | best global fitness (cost): 0.0001595
Iteration:   27 | best global fitness (cost): 0.0001178
Iteration:   28 | best global fitness (cost): 0.0001178
Iteration:   29 | best global fitness (cost): 0.0001178
Iteration:   30 | best global fitness (cost): 0.0001178
Iteration:   31 | best global fitness (cost): 0.0001178
Iteration:   32 | best global fitness (cost): 0.0001178
Iteration:   33 | best global fitness (cost): 0.0001178
Iteration:   34 | best global fitness (cost): 0.0001178
Iteration:   35 | best global fitness (cost): 0.0001178
Iteration:   36 | best global fitness (cost): 0.0001178
Iteration:   37 | best global fitness (cost): 2.91e-05
Iteration:   38 | best global fitness (cost): 1.12e-05
Iteration:   39 | best global fitness (cost): 1.12e-05
Iteration:   40 | best global fitness (cost): 1.12e-05
Iteration:   41 | best global fitness (cost): 1.12e-05
Iteration:   42 | best global fitness (cost): 1.12e-05
Iteration:   43 | best global fitness (cost): 1.12e-05
Iteration:   44 | best global fitness (cost): 1.12e-05
Iteration:   45 | best global fitness (cost): 1.12e-05
Iteration:   46 | best global fitness (cost): 1.12e-05
Iteration:   47 | best global fitness (cost): 2.4e-06
Iteration:   48 | best global fitness (cost): 2.4e-06
Iteration:   49 | best global fitness (cost): 2.4e-06
Iteration:   50 | best global fitness (cost): 2.4e-06

OPTIMUM SOLUTION
  > [1.0004123, 2.9990281]

OPTIMUM FITNESS
  > 2.4e-06

Now, incase you want to plot the fitness value for each iteration, then set plot=True (here Tmax=50 is the maximum iteration)

>>> PSO(fitness=fitness_2, Tmax=50, plot=True).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [1.0028365, 2.9977422]

OPTIMUM FITNESS
  > 1.45e-05

Fitness

Finally, in case you want to use the advanced features as mentioned above (say you want to update the weight inertia parameter w), simply use update_w=True and thats it. Similarly you can use update_c1=True (to update individual cognitive parameter c1), update_c2=True (to update social learning parameter c2), and update_vmax=True (to update maximum limited velocity of the particle vmax)

>>> PSO(fitness=fitness_1, update_w=True, update_c1=True).execute()

References:

[1] Almeida, Bruno & Coppo leite, Victor. (2019). Particle swarm optimization: a powerful technique for solving engineering problems. 10.5772/intechopen.89633.

[2] He, Yan & Ma, Wei & Zhang, Ji. (2016). The parameters selection of pso algorithm influencing on performance of fault diagnosis. matec web of conferences. 63. 02019. 10.1051/matecconf/20166302019.

[3] Clerc, M., and J. Kennedy. The particle swarm — explosion, stability, and convergence in a multidimensional complex space. ieee transactions on evolutionary computation 6, no. 1 (february 2002): 58–73.

[4] Y. H. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in proceedings of the ieee international conferences on evolutionary computation, pp. 69–73, anchorage, alaska, usa, may 1998.

[5] G. Sermpinis, K. Theofilatos, A. Karathanasopoulos, E. F. Georgopoulos, & C. Dunis, Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization, european journal of operational research.

[6] Particle swarm optimization (pso) visually explained (https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14)

[7] Rajib Kumar Bhattacharjya, Introduction to Particle Swarm Optimization (http://www.iitg.ac.in/rkbc/ce602/ce602/particle%20swarm%20algorithms.pdf)

Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022