PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Overview

Box Convolution Layer for ConvNets


Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST

What This Is

This is a PyTorch implementation of the box convolution layer as introduced in the 2018 NeurIPS paper:

Burkov, E., & Lempitsky, V. (2018) Deep Neural Networks with Box Convolutions. Advances in Neural Information Processing Systems 31, 6214-6224.

How to Use

Installing

python3 -m pip install git+https://github.com/shrubb/box-convolutions.git
python3 -m box_convolution.test # if throws errors, please open a GitHub issue

To uninstall:

python3 -m pip uninstall box_convolution

Tested on Ubuntu 18.04.2, Python 3.6, PyTorch 1.0.0, GCC {4.9, 5.5, 6.5, 7.3}, CUDA 9.2. Other versions (e.g. macOS or Python 2.7 or CUDA 8 or CUDA 10) should work too, but I haven't checked. If something doesn't build, please open a Github issue.

Known issues (see this chat):

  • CUDA 9/9.1 + GCC 6 isn't supported due to a bug in NVCC.

You can specify a different compiler with CC environment variable:

CC=g++-7 python3 -m pip install git+https://github.com/shrubb/box-convolutions.git

Using

import torch
from box_convolution import BoxConv2d

box_conv = BoxConv2d(16, 8, 240, 320)
help(BoxConv2d)

Also, there are usage examples in examples/.

Quick Tour of Box convolutions

You may want to see our poster.

Why reinvent the old convolution?

3×3 convolutions are too small ⮕ receptive field grows too slow ⮕ ConvNets have to be very deep.

This is especially undesirable in dense prediction tasks (segmentation, depth estimation, object detection, ...).

Today people solve this by

  • dilated/deformable convolutions (can bring artifacts or degrade to 1×1 conv; almost always filter high-frequency);
  • "global" spatial pooling layers (usually too constrained, fixed size, not "fully convolutional").

How does it work?

Box convolution layer is a basic depthwise convolution (i.e. Conv2d with groups=in_channels) but with special kernels called box kernels.

A box kernel is a rectangular averaging filter. That is, filter values are fixed and unit! Instead, we learn four parameters per rectangle − its size and offset:

image

image

Any success stories?

One example: there is an efficient semantic segmentation model ENet. It's a classical hourglass architecture stacked of dozens ResNet-like blocks (left image).

Let's replace some of these blocks by our "box convolution block" (right image).

First we replaced every second block with a box convolution block (BoxENet in the paper). The model became

  • more accurate,
  • faster,
  • lighter
  • without dilated convolutions.

Then, we replaced every residual block (except the down- and up-sampling ones)! The result, BoxOnlyENet, is

  • a ConvNet almost without (traditional learnable weight) convolutions,
  • 2 times less operations,
  • 3 times less parameters,
  • still more accurate than ENet!
Comments
  • Build problem!

    Build problem!

    Hi! Can't compile pls see log https://drive.google.com/open?id=1U_0axWSgQGsvvdMWv5FclS1hHHihqx9M

    Command "/home/alex/anaconda3/bin/python -u -c "import setuptools, tokenize;file='/tmp/pip-req-build-n1eyvbz3/setup.py';f=getattr(tokenize, 'open', open)(file);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, file, 'exec'))" install --record /tmp/pip-record-p0dv1roq/install-record.txt --single-version-externally-managed --compile --user --prefix=" failed with error code 1 in /tmp/pip-req-build-n1eyvbz3/

    opened by aidonchuk 63
  • Implementation in VGG

    Implementation in VGG

    Hey,

    I am trying to implement box convolution for HED (Holistically-Nested Edge Detection) which uses VGG architecture. Here's the architecture with box convolution layer:

    class HED(nn.Module):
        def __init__(self):
            super(HED, self).__init__()
    
            # conv1
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, 3, padding=1),
                BoxConv2d(1, 64, 5, 5),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 64, 3, padding=1),
                #BoxConv2d(1, 64, 28, 28),
                nn.ReLU(inplace=True),
            )
    
            # conv2
            self.conv2 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/2
                nn.Conv2d(64, 128, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(128, 128, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv3
            self.conv3 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/4
                nn.Conv2d(128, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv4
            self.conv4 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/8
                nn.Conv2d(256, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv5
            self.conv5 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/16
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            self.dsn1 = nn.Conv2d(64, 1, 1)
            self.dsn2 = nn.Conv2d(128, 1, 1)
            self.dsn3 = nn.Conv2d(256, 1, 1)
            self.dsn4 = nn.Conv2d(512, 1, 1)
            self.dsn5 = nn.Conv2d(512, 1, 1)
            self.fuse = nn.Conv2d(5, 1, 1)
    
        def forward(self, x):
            h = x.size(2)
            w = x.size(3)
    
            conv1 = self.conv1(x)
            conv2 = self.conv2(conv1)
            conv3 = self.conv3(conv2)
            conv4 = self.conv4(conv3)
            conv5 = self.conv5(conv4)
    
            ## side output
            d1 = self.dsn1(conv1)
            d2 = F.upsample_bilinear(self.dsn2(conv2), size=(h,w))
            d3 = F.upsample_bilinear(self.dsn3(conv3), size=(h,w))
            d4 = F.upsample_bilinear(self.dsn4(conv4), size=(h,w))
            d5 = F.upsample_bilinear(self.dsn5(conv5), size=(h,w))
    
            # dsn fusion output
            fuse = self.fuse(torch.cat((d1, d2, d3, d4, d5), 1))
    
            d1 = F.sigmoid(d1)
            d2 = F.sigmoid(d2)
            d3 = F.sigmoid(d3)
            d4 = F.sigmoid(d4)
            d5 = F.sigmoid(d5)
            fuse = F.sigmoid(fuse)
    
            return d1, d2, d3, d4, d5, fuse
    

    I get the following error: RuntimeError: BoxConv2d: all parameters must have as many rows as there are input channels (box_convolution_forward at src/box_convolution_interface.cpp:30)

    Can you help me with this?

    opened by Flock1 10
  • YOLO architecture

    YOLO architecture

    Hi,

    I want to know if there's some way I can create an architecture that'll work with YOLO. I've read a lot of implementations with pytorch but I don't know how should I modify the cfg file so that I can add box convolution layer.

    Let me know.

    opened by Flock1 9
  • Build Problem Windows 10 CUDA10.1 Python Bindings?

    Build Problem Windows 10 CUDA10.1 Python Bindings?

    Hi, I'm trying to compile the box-convolutions using Windows 10 with CUDA 10.1. This results in the following error:

    \python\python36\lib\site-packages\torch\lib\include\pybind11\cast.h(1439): error: expression must be a pointer to a complete object type
    
      1 error detected in the compilation of "C:/Users/CHRIST~1/AppData/Local/Temp/tmpxft_000010ec_00000000-8_integral_image_cuda.cpp4.ii".
      integral_image_cuda.cu
      error: command 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1\\bin\\nvcc.exe' failed with exit status 2
    
      ----------------------------------------
    Failed building wheel for box-convolution
    Running setup.py clean for box-convolution
    Failed to build box-convolution
    

    Any ideas? Thanks in advance

    opened by tom23141 6
  • Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Hello,

    I've been trying to implement your box convolution layer on a ResNet model by just substituting your BottleneckBoxConv layers for a typical ResNet Bottleneck layer.

    I was getting this error

    THCudaCheck FAIL file=src/box_convolution_cuda_forward.cu line=250 error=9 : invalid configuration argument
    Traceback (most recent call last):
      File "half_box_train.py", line 178, in <module>
        main()
      File "half_box_train.py", line 107, in main
        scores = res_net(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 331, in forward
         x = self.layer3(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
           input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 66, in forward
        return F.relu(x + self.main_branch(x), inplace=True)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
    input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_module.py", line 222, in forward
        self.reparametrization_h, self.reparametrization_w, self.normalize, self.exact)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_function.py", line 46, in forward
        input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:250
    

    Thanks so much!

    opened by dkang9503 5
  • Speed and Efficiency of Depthwise separable operation?

    Speed and Efficiency of Depthwise separable operation?

    As far as modern libraries are concerned, there is not much support for depth-wise separable operations, i.e. we cannot write custom operations that can be done depthwise. Only convolutions are supported.

    How did you apply M box convolutions to each of the N input filters, to generate NM output filters? How is the different than using a for loop over the N input filters, applying M box convs on each one, and concatenating all the results?

    opened by kennyseb 5
  • Import Error

    Import Error

    Success build with ubuntu 16.04, cuda 10 and gcc 7.4. But import error encountered:

    In [1]: import torch
    
    In [2]: from box_convolution import BoxConv2d
    
    

    ImportError                               Traceback (most recent call last)
    <ipython-input-2-2424917dbf01> in <module>()
    ----> 1 from box_convolution import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/__init__.py in <module>()
    ----> 1 from .box_convolution_module import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_module.py in <module>()
          2 import random
          3 
    ----> 4 from .box_convolution_function import BoxConvolutionFunction, reparametrize
          5 import box_convolution_cpp_cuda as cpp_cuda
          6 
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_function.py in <module>()
          1 import torch
          2 
    ----> 3 import box_convolution_cpp_cuda as cpp_cuda
          4 
          5 def reparametrize(
    
    ImportError: /usr/Software/anaconda3/lib/python3.6/site-packages/box_convolution_cpp_cuda.cpython-36m-x86_64-linux-gnu.so: undefined symbol: __cudaPopCallConfiguration
    

    @shrubb

    opened by the-butterfly 5
  • Error during forward pass

    Error during forward pass

         44         input_integrated = cpp_cuda.integral_image(input)
         45         output = cpp_cuda.box_convolution_forward(
    ---> 46             input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
         47 
         48         ctx.save_for_backward(
    
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:249```
    opened by belskikh 5
  • Test script failed

    Test script failed

    Test script assertion failed:

    Random seed is 1546545757 Testing for device 'cpu' Running test_integral_image()... 100%|| 50/50 [00:00<00:00, 1491.15it/s] OK Running test_box_convolution_module()... 0%| python3: /pytorch/third_party/ideep/mkl-dnn/src/cpu/jit_avx2_conv_kernel_f32.cpp:567: static mkldnn::impl::status_t mkldnn::impl::cpu::jit_avx2_conv_fwd_kernel_f32::init_conf(mkldnn::impl::cpu::jit_conv_conf_t&, const convolution_desc_t&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const primitive_attr_t&): Assertion `jcp.ur_w * (jcp.nb_oc_blocking + 1) <= num_avail_regs' failed. Aborted (core dumped)

    Configuration: Ubuntu 16.04 LTS, CUDA 9.2, PyTorch 1.1.0, GCC 5.4.0.

    opened by vtereshkov 4
  • how box convolution works

    how box convolution works

    Hi,

    It is a nice work. In the first figure on your poster, you compared the 3x3 convolution layer and your box convolution layer. I am not clear how the box convolution works. Is it right that for each position (p,q) on the image, you use a box filter which has a relative position x, y to (p,q) and size w,h to calculate the value for (p,q) on the output? You learn the 4 parameters x, y, w, h for each box filter. For example, in the figure, the value for the red anchor pixel position on the output should be the sum of the values in the box. Is it correct? Thanks.

    opened by jiaozizhao 4
  • Multi-GPU Training: distributed error encountered

    Multi-GPU Training: distributed error encountered

    I am using https://github.com/facebookresearch/maskrcnn-benchmark for object detection, I want to use box convolutions, when I add a box convolution after some layer, training with 1 GPU is OK, while training with multiple GPUs in distributed mode failed, the error is very similar to this issue, I do not know how to fix, have some ideas? @shrubb

    2019-02-18 16:09:15,187 maskrcnn_benchmark.trainer INFO: Start training
    Traceback (most recent call last):
      File "tools/train_net.py", line 172, in <module>
        main()
      File "tools/train_net.py", line 165, in main
        model = train(cfg, args.local_rank, args.distributed)
      File "tools/train_net.py", line 74, in train
        arguments,
      File "/srv/data0/hzxubinbin/projects/maskrcnn_benchmark/maskrcnn-benchmark/maskrcnn_benchmark/engine/trainer.py", line 79, in do_train
        losses.backward()
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 445, in distributed_data_parallel_hook
        self._queue_reduction(bucket_idx)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 475, in _queue_reduction
        self.device_ids)
    TypeError: _queue_reduction(): incompatible function arguments. The following argument types are supported:
        1. (process_group: torch.distributed.ProcessGroup, grads_batch: List[List[at::Tensor]], devices: List[int]) -> Tuple[torch.distributed.Work, at::Tensor]
    
    Invoked with: <torch.distributed.ProcessGroupNCCL object at 0x7f0d95248148>, [[tensor([[[[0.]],
    

    1 GPU is too slow, I want to use multiple GPUs

    opened by freesouls 4
  • How can I run Cityscapes example on a test set?

    How can I run Cityscapes example on a test set?

    Hello, collegues! I've trained BoxERFNet, and now I wanna run this model on a test set to evaluate it. I checked the source code(train.py) and established 'test' in place of 'test' in 80th string. But there was falure, the evaluated metrics were incorrect(e.g. 0.0 and 0.0). Can you explain me, what I need to do to evaluate model on a test set? I guess that problem is on 'validate' function(241th string), because confusion_matrix_update(268th string) tensors are really different in test and val sets.

    opened by mikhailkonyk 3
Releases(v1.0.0)
Owner
Egor Burkov
Egor Burkov
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022