PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Overview

Box Convolution Layer for ConvNets


Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST

What This Is

This is a PyTorch implementation of the box convolution layer as introduced in the 2018 NeurIPS paper:

Burkov, E., & Lempitsky, V. (2018) Deep Neural Networks with Box Convolutions. Advances in Neural Information Processing Systems 31, 6214-6224.

How to Use

Installing

python3 -m pip install git+https://github.com/shrubb/box-convolutions.git
python3 -m box_convolution.test # if throws errors, please open a GitHub issue

To uninstall:

python3 -m pip uninstall box_convolution

Tested on Ubuntu 18.04.2, Python 3.6, PyTorch 1.0.0, GCC {4.9, 5.5, 6.5, 7.3}, CUDA 9.2. Other versions (e.g. macOS or Python 2.7 or CUDA 8 or CUDA 10) should work too, but I haven't checked. If something doesn't build, please open a Github issue.

Known issues (see this chat):

  • CUDA 9/9.1 + GCC 6 isn't supported due to a bug in NVCC.

You can specify a different compiler with CC environment variable:

CC=g++-7 python3 -m pip install git+https://github.com/shrubb/box-convolutions.git

Using

import torch
from box_convolution import BoxConv2d

box_conv = BoxConv2d(16, 8, 240, 320)
help(BoxConv2d)

Also, there are usage examples in examples/.

Quick Tour of Box convolutions

You may want to see our poster.

Why reinvent the old convolution?

3×3 convolutions are too small ⮕ receptive field grows too slow ⮕ ConvNets have to be very deep.

This is especially undesirable in dense prediction tasks (segmentation, depth estimation, object detection, ...).

Today people solve this by

  • dilated/deformable convolutions (can bring artifacts or degrade to 1×1 conv; almost always filter high-frequency);
  • "global" spatial pooling layers (usually too constrained, fixed size, not "fully convolutional").

How does it work?

Box convolution layer is a basic depthwise convolution (i.e. Conv2d with groups=in_channels) but with special kernels called box kernels.

A box kernel is a rectangular averaging filter. That is, filter values are fixed and unit! Instead, we learn four parameters per rectangle − its size and offset:

image

image

Any success stories?

One example: there is an efficient semantic segmentation model ENet. It's a classical hourglass architecture stacked of dozens ResNet-like blocks (left image).

Let's replace some of these blocks by our "box convolution block" (right image).

First we replaced every second block with a box convolution block (BoxENet in the paper). The model became

  • more accurate,
  • faster,
  • lighter
  • without dilated convolutions.

Then, we replaced every residual block (except the down- and up-sampling ones)! The result, BoxOnlyENet, is

  • a ConvNet almost without (traditional learnable weight) convolutions,
  • 2 times less operations,
  • 3 times less parameters,
  • still more accurate than ENet!
Comments
  • Build problem!

    Build problem!

    Hi! Can't compile pls see log https://drive.google.com/open?id=1U_0axWSgQGsvvdMWv5FclS1hHHihqx9M

    Command "/home/alex/anaconda3/bin/python -u -c "import setuptools, tokenize;file='/tmp/pip-req-build-n1eyvbz3/setup.py';f=getattr(tokenize, 'open', open)(file);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, file, 'exec'))" install --record /tmp/pip-record-p0dv1roq/install-record.txt --single-version-externally-managed --compile --user --prefix=" failed with error code 1 in /tmp/pip-req-build-n1eyvbz3/

    opened by aidonchuk 63
  • Implementation in VGG

    Implementation in VGG

    Hey,

    I am trying to implement box convolution for HED (Holistically-Nested Edge Detection) which uses VGG architecture. Here's the architecture with box convolution layer:

    class HED(nn.Module):
        def __init__(self):
            super(HED, self).__init__()
    
            # conv1
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, 3, padding=1),
                BoxConv2d(1, 64, 5, 5),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 64, 3, padding=1),
                #BoxConv2d(1, 64, 28, 28),
                nn.ReLU(inplace=True),
            )
    
            # conv2
            self.conv2 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/2
                nn.Conv2d(64, 128, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(128, 128, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv3
            self.conv3 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/4
                nn.Conv2d(128, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv4
            self.conv4 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/8
                nn.Conv2d(256, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv5
            self.conv5 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/16
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            self.dsn1 = nn.Conv2d(64, 1, 1)
            self.dsn2 = nn.Conv2d(128, 1, 1)
            self.dsn3 = nn.Conv2d(256, 1, 1)
            self.dsn4 = nn.Conv2d(512, 1, 1)
            self.dsn5 = nn.Conv2d(512, 1, 1)
            self.fuse = nn.Conv2d(5, 1, 1)
    
        def forward(self, x):
            h = x.size(2)
            w = x.size(3)
    
            conv1 = self.conv1(x)
            conv2 = self.conv2(conv1)
            conv3 = self.conv3(conv2)
            conv4 = self.conv4(conv3)
            conv5 = self.conv5(conv4)
    
            ## side output
            d1 = self.dsn1(conv1)
            d2 = F.upsample_bilinear(self.dsn2(conv2), size=(h,w))
            d3 = F.upsample_bilinear(self.dsn3(conv3), size=(h,w))
            d4 = F.upsample_bilinear(self.dsn4(conv4), size=(h,w))
            d5 = F.upsample_bilinear(self.dsn5(conv5), size=(h,w))
    
            # dsn fusion output
            fuse = self.fuse(torch.cat((d1, d2, d3, d4, d5), 1))
    
            d1 = F.sigmoid(d1)
            d2 = F.sigmoid(d2)
            d3 = F.sigmoid(d3)
            d4 = F.sigmoid(d4)
            d5 = F.sigmoid(d5)
            fuse = F.sigmoid(fuse)
    
            return d1, d2, d3, d4, d5, fuse
    

    I get the following error: RuntimeError: BoxConv2d: all parameters must have as many rows as there are input channels (box_convolution_forward at src/box_convolution_interface.cpp:30)

    Can you help me with this?

    opened by Flock1 10
  • YOLO architecture

    YOLO architecture

    Hi,

    I want to know if there's some way I can create an architecture that'll work with YOLO. I've read a lot of implementations with pytorch but I don't know how should I modify the cfg file so that I can add box convolution layer.

    Let me know.

    opened by Flock1 9
  • Build Problem Windows 10 CUDA10.1 Python Bindings?

    Build Problem Windows 10 CUDA10.1 Python Bindings?

    Hi, I'm trying to compile the box-convolutions using Windows 10 with CUDA 10.1. This results in the following error:

    \python\python36\lib\site-packages\torch\lib\include\pybind11\cast.h(1439): error: expression must be a pointer to a complete object type
    
      1 error detected in the compilation of "C:/Users/CHRIST~1/AppData/Local/Temp/tmpxft_000010ec_00000000-8_integral_image_cuda.cpp4.ii".
      integral_image_cuda.cu
      error: command 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1\\bin\\nvcc.exe' failed with exit status 2
    
      ----------------------------------------
    Failed building wheel for box-convolution
    Running setup.py clean for box-convolution
    Failed to build box-convolution
    

    Any ideas? Thanks in advance

    opened by tom23141 6
  • Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Hello,

    I've been trying to implement your box convolution layer on a ResNet model by just substituting your BottleneckBoxConv layers for a typical ResNet Bottleneck layer.

    I was getting this error

    THCudaCheck FAIL file=src/box_convolution_cuda_forward.cu line=250 error=9 : invalid configuration argument
    Traceback (most recent call last):
      File "half_box_train.py", line 178, in <module>
        main()
      File "half_box_train.py", line 107, in main
        scores = res_net(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 331, in forward
         x = self.layer3(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
           input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 66, in forward
        return F.relu(x + self.main_branch(x), inplace=True)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
    input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_module.py", line 222, in forward
        self.reparametrization_h, self.reparametrization_w, self.normalize, self.exact)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_function.py", line 46, in forward
        input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:250
    

    Thanks so much!

    opened by dkang9503 5
  • Speed and Efficiency of Depthwise separable operation?

    Speed and Efficiency of Depthwise separable operation?

    As far as modern libraries are concerned, there is not much support for depth-wise separable operations, i.e. we cannot write custom operations that can be done depthwise. Only convolutions are supported.

    How did you apply M box convolutions to each of the N input filters, to generate NM output filters? How is the different than using a for loop over the N input filters, applying M box convs on each one, and concatenating all the results?

    opened by kennyseb 5
  • Import Error

    Import Error

    Success build with ubuntu 16.04, cuda 10 and gcc 7.4. But import error encountered:

    In [1]: import torch
    
    In [2]: from box_convolution import BoxConv2d
    
    

    ImportError                               Traceback (most recent call last)
    <ipython-input-2-2424917dbf01> in <module>()
    ----> 1 from box_convolution import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/__init__.py in <module>()
    ----> 1 from .box_convolution_module import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_module.py in <module>()
          2 import random
          3 
    ----> 4 from .box_convolution_function import BoxConvolutionFunction, reparametrize
          5 import box_convolution_cpp_cuda as cpp_cuda
          6 
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_function.py in <module>()
          1 import torch
          2 
    ----> 3 import box_convolution_cpp_cuda as cpp_cuda
          4 
          5 def reparametrize(
    
    ImportError: /usr/Software/anaconda3/lib/python3.6/site-packages/box_convolution_cpp_cuda.cpython-36m-x86_64-linux-gnu.so: undefined symbol: __cudaPopCallConfiguration
    

    @shrubb

    opened by the-butterfly 5
  • Error during forward pass

    Error during forward pass

         44         input_integrated = cpp_cuda.integral_image(input)
         45         output = cpp_cuda.box_convolution_forward(
    ---> 46             input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
         47 
         48         ctx.save_for_backward(
    
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:249```
    opened by belskikh 5
  • Test script failed

    Test script failed

    Test script assertion failed:

    Random seed is 1546545757 Testing for device 'cpu' Running test_integral_image()... 100%|| 50/50 [00:00<00:00, 1491.15it/s] OK Running test_box_convolution_module()... 0%| python3: /pytorch/third_party/ideep/mkl-dnn/src/cpu/jit_avx2_conv_kernel_f32.cpp:567: static mkldnn::impl::status_t mkldnn::impl::cpu::jit_avx2_conv_fwd_kernel_f32::init_conf(mkldnn::impl::cpu::jit_conv_conf_t&, const convolution_desc_t&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const primitive_attr_t&): Assertion `jcp.ur_w * (jcp.nb_oc_blocking + 1) <= num_avail_regs' failed. Aborted (core dumped)

    Configuration: Ubuntu 16.04 LTS, CUDA 9.2, PyTorch 1.1.0, GCC 5.4.0.

    opened by vtereshkov 4
  • how box convolution works

    how box convolution works

    Hi,

    It is a nice work. In the first figure on your poster, you compared the 3x3 convolution layer and your box convolution layer. I am not clear how the box convolution works. Is it right that for each position (p,q) on the image, you use a box filter which has a relative position x, y to (p,q) and size w,h to calculate the value for (p,q) on the output? You learn the 4 parameters x, y, w, h for each box filter. For example, in the figure, the value for the red anchor pixel position on the output should be the sum of the values in the box. Is it correct? Thanks.

    opened by jiaozizhao 4
  • Multi-GPU Training: distributed error encountered

    Multi-GPU Training: distributed error encountered

    I am using https://github.com/facebookresearch/maskrcnn-benchmark for object detection, I want to use box convolutions, when I add a box convolution after some layer, training with 1 GPU is OK, while training with multiple GPUs in distributed mode failed, the error is very similar to this issue, I do not know how to fix, have some ideas? @shrubb

    2019-02-18 16:09:15,187 maskrcnn_benchmark.trainer INFO: Start training
    Traceback (most recent call last):
      File "tools/train_net.py", line 172, in <module>
        main()
      File "tools/train_net.py", line 165, in main
        model = train(cfg, args.local_rank, args.distributed)
      File "tools/train_net.py", line 74, in train
        arguments,
      File "/srv/data0/hzxubinbin/projects/maskrcnn_benchmark/maskrcnn-benchmark/maskrcnn_benchmark/engine/trainer.py", line 79, in do_train
        losses.backward()
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 445, in distributed_data_parallel_hook
        self._queue_reduction(bucket_idx)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 475, in _queue_reduction
        self.device_ids)
    TypeError: _queue_reduction(): incompatible function arguments. The following argument types are supported:
        1. (process_group: torch.distributed.ProcessGroup, grads_batch: List[List[at::Tensor]], devices: List[int]) -> Tuple[torch.distributed.Work, at::Tensor]
    
    Invoked with: <torch.distributed.ProcessGroupNCCL object at 0x7f0d95248148>, [[tensor([[[[0.]],
    

    1 GPU is too slow, I want to use multiple GPUs

    opened by freesouls 4
  • How can I run Cityscapes example on a test set?

    How can I run Cityscapes example on a test set?

    Hello, collegues! I've trained BoxERFNet, and now I wanna run this model on a test set to evaluate it. I checked the source code(train.py) and established 'test' in place of 'test' in 80th string. But there was falure, the evaluated metrics were incorrect(e.g. 0.0 and 0.0). Can you explain me, what I need to do to evaluate model on a test set? I guess that problem is on 'validate' function(241th string), because confusion_matrix_update(268th string) tensors are really different in test and val sets.

    opened by mikhailkonyk 3
Releases(v1.0.0)
Owner
Egor Burkov
Egor Burkov
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022