Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Overview

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Trevor Ablett, Daniel (Yifan) Zhai, Jonathan Kelly

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’21)

Paper website: https://papers.starslab.ca/multiview-manipulation/
arXiv paper: https://arxiv.org/abs/2104.13907
DOI: https://doi.org/10.1109/IROS51168.2021.9636440


This work was motivated by a relatively simple question: will increasingly popular end-to-end visuomotor policies work on a mobile manipulator, where the angle of the base will not be repeatable from one execution of a task to another? We conducted a variety of experiments to show that, naively, policies trained on fixed-base data with imitation learning do not generalize to various poses, and also generate multiview datasets and corresponding multiview policies to remedy the problem.

This repository contains the source code for reproducing our results and plots.

Requirements

We have only tested in python 3.7. Our simulated environments use pybullet, and our training code uses TensorFlow 2.x, specifically relying on our manipulator-learning package. All requirements (for simulated environments) are automatically installed by following Setup below.

Our policies also use the groups argument in TensorFlow Conv2d, which requires a GPU.

Setup

Preliminary note on TensorFlow install

This repository uses TensorFlow with GPU support, which can of course can be a bit of a pain to install. If you already have it installed, ignore this message. Otherwise, we have found the following procedure to work:

  1. Install conda.
  2. Create a new conda env to use for this work and activate it.
  3. Run the following to install a version of TensorFlow that may work with Conda
conda install cudatoolkit cudnn
pip install tensorflow==2.6.* tensorflow-probability==0.14

Now you can continue with the regular installation.

Regular Installation

Clone this repository and install in your python environment with pip.

git clone [email protected]:utiasSTARS/multiview-manipulation.git && cd multiview-manipulation
pip install -e .

A Note on Environment Names

The simulated environments that we use are all available in our manipulator-learning package and are called:

  • ThingLiftXYZImage
  • ThingLiftXYZMultiview
  • ThingStackSameImageV2
  • ThingStackSameMultiviewV2
  • ThingPickAndInsertSucDoneImage
  • ThingPickAndInsertSucDoneMultiview
  • ThingDoorImage
  • ThingDoorMultiview

The real environments we use with our mobile manipulator will, of course, be harder to reproduce, but were generated using our thing-gym-ros repository and are called:

  • ThingRosPickAndInsertCloser6DOFImageMB
  • ThingRosDrawerRanGrip6DOFImageMB
  • ThingRosDoorRanGrip6DOFImage
  • ThingRosDoorRanGrip6DOFImageMB

Running and Training Behavioural Cloning (BC) policies

The script in this repository can actually train and test (multiple)policies all in one shot.

  1. Choose one of:

    1. Train and test policies all at once. Download and uncompress any of the simulated expert data (generated using an HTC Vive hand tracker) from this Google Drive Folder.
    2. Generate policies using the procedure outlined in the following section.
    3. Download policies from this Google Drive Folder. We'll assume that you downloaded ThingDoorMultiview_bc_models.zip.

    If you choose i., your folder structure should be:

     .
     └── multiview-manipulation/
         ├── multiview_manipulation/
         └── data/
             ├── bc_models/
             └── demonstrations/
                 ├── ThingDoorMultiview/
                     ├── depth/
                     ├── img/
                     ├── data.npz
                     └── data_swp.npz
    

    If you choose ii. or iii., your folder structure should be:

    .
    └── multiview-manipulation/
        ├── multiview_manipulation/
        └── data/
            └── bc_models/
                ├── ThingDoorMultiview_25_trajs_1/
                ├── ThingDoorMultiview_25_trajs_2/
                ├── ThingDoorMultiview_25_trajs_3/
                ├── ThingDoorMultiview_25_trajs_4/
                ├── ThingDoorMultiview_25_trajs_5/   
                ├── ThingDoorMultiview_50_trajs_1/   
                └── ...   
    
  2. Modify the following options in multiview_manipulation/policies/test_policies.py to match your system and selected data:

    • main_data_dir: top level data directory (default: data)
    • bc_models_dir: top level trained BC models directory (default: bc_models)
    • expert_data_dir: top level expert data directory (default: demonstrations, only required if option i. above was selected).
  3. Change the following options to choose whether you want to test policies in a different environment from which they were trained in (e.g., as stated in the paper, you can test a ThingDoorMultiview policy in both ThingDoorMultiview and ThingDoorImage):

    • env_name: environment to test policy in
    • policy_env_name: name of environment that data for policy was generated from.
  4. Modify the options for choosing which policies to train/test:

    • bc_ckpts_num_traj: The different number of trajectories to use for training/trained policies (default: range(200, 24, -25))
    • seeds: Which seeds to use (default: [1, 2, 3, 4, 5])
  5. Run the script:

python multiview_manipulation/policies/test_policies.py
  1. Your results will show up in data/bc_results/{env_name}_{env_seed}_{experiment_name}.

Training policies with Behavioural Cloning (BC) only

  1. Download and uncompress any of simulated expert data from this Google Drive Folder. We'll assume that you downloaded ThingDoorMultiview.tar.gz and uncompressed it as ThingDoorMultiview.

  2. Modify the following options in multiview_manipulation/policies/gen_policies.py to match your system and selected data:

    • bc_models_dir: top level directory for trained BC models (default: data/bc_models)
    • expert_data_dir: top level directory for expert data (default: data/demonstrations)
    • dataset_dir: the name of the directory containing depth/, img/, data.npz and data_swp.npz.
    • env_str: The string corresponding to the name of the environment (only used for the saved BC policy name)

    For example, if you're using the default folder structure, your setup should look like this:

    .
    └── multiview-manipulation/
        ├── multiview_manipulation/
        └── data/
            ├── bc_models/
            └── demonstrations/
                ├── ThingDoorMultiview/
                    ├── depth/
                    ├── img/
                    ├── data.npz
                    └── data_swp.npz
    
  3. Modify the options for choosing which policies to train:

    • bc_ckpts_num_traj: The different number of trajectories to use for training policies (default: range(25, 201, 25))
    • seeds: Which seeds to train for (default: [1, 2, 3, 4, 5])
  4. Run the file:

python multiview_manipulation/policies/gen_policies.py
  1. Your trained policies will show up in individual folders under the bc_models folder as {env_str}_{num_trajs}_trajs_{seed}/.

Collecting Demonstrations

All of our demonstrations were collected using the collect_demos.py file from the manipulator-learning package and an HTC Vive Hand Tracker. To collect demonstrations, you would use, for example:

git clone [email protected]:utiasSTARS/manipulator-learning.git && cd manipulator-learning
pip install -e .
pip install -r device_requirements.txt
python manipulator_learning/learning/imitation/collect_demos.py --device vr --directory demonstrations --demo_name ThingDoorMultiview01 --environment ThingDoorMultiview

You can also try using the keyboard with:

python manipulator_learning/learning/imitation/collect_demos.py --device keyboard --directory demonstrations --demo_name ThingDoorMultiview01 --environment ThingDoorMultiview

More instructions can be found in the manipulator-learning README.

Real Environments

Although it would be nearly impossible to exactly reproduce our results with our real environments, the code we used for generating our real environments can be found in our thing-gym-ros repository.

Citation

If you use this in your work, please cite:

@inproceedings{2021_Ablett_Seeing,
    address = {Prague, Czech Republic},
    author = {Trevor Ablett and Yifan Zhai and Jonathan Kelly},
    booktitle = {Proceedings of the {IEEE/RSJ} International Conference on Intelligent Robots and Systems {(IROS'21)}},
    date = {2021-09-27/2021-10-01},
    month = {Sep. 27--Oct. 1},
    site = {https://papers.starslab.ca/multiview-manipulation/},
    title = {Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations},
    url = {http://arxiv.org/abs/2104.13907},
    video1 = {https://youtu.be/oh0JMeyoswg},
    year = {2021}
}
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022