End-To-End Optimization of LiDAR Beam Configuration

Overview

End-To-End Optimization of LiDAR Beam Configuration

arXiv | IEEE Xplore

This repository is the official implementation of the paper:

End-To-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization

Niclas Vödisch, Ozan Unal, Ke Li, Luc Van Gool, and Dengxin Dai.

To appear in RA-L.

Overview of 3D object detection

If you find our work useful, please consider citing our paper:

to be added after publication

📔 Abstract

Pre-determined beam configurations of low-resolution LiDARs are task-agnostic, hence simply using can result in non-optimal performance. In this work, we propose to optimize the beam distribution for a given target task via a reinforcement learning-based learning-to-optimize (RL-L2O) framework. We design our method in an end-to-end fashion leveraging the final performance of the task to guide the search process. Due to the simplicity of our approach, our work can be integrated with any LiDAR-based application as a simple drop-in module. In this repository, we provide the code for the exemplary task of 3D object detection.

🏗️ ️ Setup

To clone this repository and all submodules run:

git clone --recurse-submodules -j8 [email protected]:vniclas/lidar_beam_selection.git

⚙️ Installation

To install this code, please follow the steps below:

  1. Create a conda environment: conda create -n beam_selection python=3.8
  2. Activate the environment: conda activate beam_selection
  3. Install dependencies: pip install -r requirements.txt
  4. Install cudatoolkit (change to the used CUDA version):
    conda install cudnn cudatoolkit=10.2
  5. Install spconv (change to the used CUDA version):
    pip install spconv-cu102
  6. Install OpenPCDet (linked as submodule):
    cd third_party/OpenPCDet && python setup.py develop && cd ../..
  7. Install Pseudo-LiDAR++ (linked as submodule):
    pip install -r third_party/Pseudo_Lidar_V2/requirements.txt
    pip install pillow==8.3.2 (avoid runtime warnings)

💾 Data Preparation

  1. Download KITTI 3D Object Detection dataset and extract the files:
    1. Left color images image_2
    2. Right color images image_3
    3. Velodyne point clouds velodyne
    4. Camera calibration matrices calib
    5. Training labels label_2
  2. Predict the depth maps:
    1. Download pretrained model (training+validation)
    2. Generate the data:
    cd third_party/Pseudo_Lidar_V2  
    python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume PATH_TO_CHECKPOINTS/sdn_kitti_object_trainval.pth --datapath PATH_TO_KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval \
    --save_path PATH_TO_DATA/sdn_kitti_train_set
    Note: Please adjust the paths PATH_TO_CHECKPOINTS, PATH_TO_KITTI, and PATH_TO_DATA to match your setup.
  3. Rename training/velodyne to training/velodyne_original
  4. Symlink the KITTI folders to PCDet:
    • ln -s PATH_TO_KITTI/training third_party/OpenPCDet/data/kitti/training
    • ln -s PATH_TO_KITTI/testing third_party/OpenPCDet/data/kitti/testing

🏃 Running 3D Object Detection

  1. Adjust paths in main.py. Further available parameters are listed in rl_l2o/eps_greedy_search.py and can be added in main.py.
  2. Adjust the number of epochs of the 3D object detector in (we used 40 epochs):
  3. Adjust the training scripts of the utilized detector to match your setup, e.g., object_detection/scripts/train_pointpillar.sh.
  4. Initiate the search: python main.py
    Note: Since we keep intermediate results to easily re-use them in later iterations, running the script will create a lot of data in the output_dir specified in main.py. You might want to manually delete some folders from time to time.

🔧 Adding more Tasks

Due to the design of the RL-L2O framework, it can be used as a simple drop-in module for many LiDAR applications. To apply the search algorithm to another task, just implement a custom RewardComputer, e.g., see object_detection/compute_reward.py. Additionally, you will have to prepare a set of features for each LiDAR beam. For the KITTI 3D Object Detection dataset, we provide the features as presented in the paper in object_detection/data/features_pcl.pkl.

👩‍⚖️ License

Creative Commons License
This software is made available for non-commercial use under a Creative Commons Attribution-NonCommercial 4.0 International License. A summary of the license can be found on the Creative Commons website.

Owner
Niclas
PhD student
Niclas
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022