End-To-End Optimization of LiDAR Beam Configuration

Overview

End-To-End Optimization of LiDAR Beam Configuration

arXiv | IEEE Xplore

This repository is the official implementation of the paper:

End-To-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization

Niclas Vödisch, Ozan Unal, Ke Li, Luc Van Gool, and Dengxin Dai.

To appear in RA-L.

Overview of 3D object detection

If you find our work useful, please consider citing our paper:

to be added after publication

📔 Abstract

Pre-determined beam configurations of low-resolution LiDARs are task-agnostic, hence simply using can result in non-optimal performance. In this work, we propose to optimize the beam distribution for a given target task via a reinforcement learning-based learning-to-optimize (RL-L2O) framework. We design our method in an end-to-end fashion leveraging the final performance of the task to guide the search process. Due to the simplicity of our approach, our work can be integrated with any LiDAR-based application as a simple drop-in module. In this repository, we provide the code for the exemplary task of 3D object detection.

🏗️ ️ Setup

To clone this repository and all submodules run:

git clone --recurse-submodules -j8 [email protected]:vniclas/lidar_beam_selection.git

⚙️ Installation

To install this code, please follow the steps below:

  1. Create a conda environment: conda create -n beam_selection python=3.8
  2. Activate the environment: conda activate beam_selection
  3. Install dependencies: pip install -r requirements.txt
  4. Install cudatoolkit (change to the used CUDA version):
    conda install cudnn cudatoolkit=10.2
  5. Install spconv (change to the used CUDA version):
    pip install spconv-cu102
  6. Install OpenPCDet (linked as submodule):
    cd third_party/OpenPCDet && python setup.py develop && cd ../..
  7. Install Pseudo-LiDAR++ (linked as submodule):
    pip install -r third_party/Pseudo_Lidar_V2/requirements.txt
    pip install pillow==8.3.2 (avoid runtime warnings)

💾 Data Preparation

  1. Download KITTI 3D Object Detection dataset and extract the files:
    1. Left color images image_2
    2. Right color images image_3
    3. Velodyne point clouds velodyne
    4. Camera calibration matrices calib
    5. Training labels label_2
  2. Predict the depth maps:
    1. Download pretrained model (training+validation)
    2. Generate the data:
    cd third_party/Pseudo_Lidar_V2  
    python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume PATH_TO_CHECKPOINTS/sdn_kitti_object_trainval.pth --datapath PATH_TO_KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval \
    --save_path PATH_TO_DATA/sdn_kitti_train_set
    Note: Please adjust the paths PATH_TO_CHECKPOINTS, PATH_TO_KITTI, and PATH_TO_DATA to match your setup.
  3. Rename training/velodyne to training/velodyne_original
  4. Symlink the KITTI folders to PCDet:
    • ln -s PATH_TO_KITTI/training third_party/OpenPCDet/data/kitti/training
    • ln -s PATH_TO_KITTI/testing third_party/OpenPCDet/data/kitti/testing

🏃 Running 3D Object Detection

  1. Adjust paths in main.py. Further available parameters are listed in rl_l2o/eps_greedy_search.py and can be added in main.py.
  2. Adjust the number of epochs of the 3D object detector in (we used 40 epochs):
  3. Adjust the training scripts of the utilized detector to match your setup, e.g., object_detection/scripts/train_pointpillar.sh.
  4. Initiate the search: python main.py
    Note: Since we keep intermediate results to easily re-use them in later iterations, running the script will create a lot of data in the output_dir specified in main.py. You might want to manually delete some folders from time to time.

🔧 Adding more Tasks

Due to the design of the RL-L2O framework, it can be used as a simple drop-in module for many LiDAR applications. To apply the search algorithm to another task, just implement a custom RewardComputer, e.g., see object_detection/compute_reward.py. Additionally, you will have to prepare a set of features for each LiDAR beam. For the KITTI 3D Object Detection dataset, we provide the features as presented in the paper in object_detection/data/features_pcl.pkl.

👩‍⚖️ License

Creative Commons License
This software is made available for non-commercial use under a Creative Commons Attribution-NonCommercial 4.0 International License. A summary of the license can be found on the Creative Commons website.

Owner
Niclas
PhD student
Niclas
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023