Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Related tags

Deep LearningVoxSeT
Overview

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper]

Authors: Chenhang He, Ruihuang Li, Shuai Li, Lei Zhang.

This project is built on OpenPCDet.

Updates

2022-04-09: Add waymo config and multi-frame input.

The performance of VoxSeT (single-stage, single-frame) on Waymo valdation split are as follows.

% Training Car AP/APH Ped AP/APH Cyc AP/APH Log file
Level 1 20% 72.10/71.59 77.94/69.58 69.88/68.54 Download
Level 2 20% 63.62/63.17 70.20/62.51 67.31/66.02
Level 1 100% 74.50/74.03 80.03/72.42 71.56/70.29 Download
Level 2 100% 65.99/65.56 72.45/65.39 68.95/67.73

Introduction

drawing

Transformer has demonstrated promising performance in many 2D vision tasks. However, it is cumbersome to compute the self-attention on large-scale point cloud data because point cloud is a long sequence and unevenly distributed in 3D space. To solve this issue, existing methods usually compute self-attention locally by grouping the points into clusters of the same size, or perform convolutional self-attention on a discretized representation. However, the former results in stochastic point dropout, while the latter typically has narrow attention fields. In this paper, we propose a novel voxel-based architecture, namely Voxel Set Transformer (VoxSeT), to detect 3D objects from point clouds by means of set-to-set translation. VoxSeT is built upon a voxel-based set attention (VSA) module, which reduces the self-attention in each voxel by two cross attentions and models features in a hidden space induced by a group of latent codes. With the VSA module, VoxSeT can manage voxelized point clusters with arbitrary size in a wide range, and process them in parallel with linear complexity. The proposed VoxSeT integrates the high performance of transformer with the efficiency of voxel-based model, which can be used as a good alternative to the convolutional and point-based backbones.

1. Recommended Environment

  • Linux (tested on Ubuntu 16.04)
  • Python 3.7
  • PyTorch 1.9 or higher (tested on PyTorch 1.10.1)
  • CUDA 9.0 or higher (tested on CUDA 10.2)

2. Set the Environment

pip install -r requirement.txt
python setup.py build_ext --inplace 

The torch_scatter package is required

3. Data Preparation

# Download KITTI and organize it into the following form:
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2

# Generatedata infos:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

4. Pretrain model

You can download the pretrain model here and the log file here.

The performance (using 11 recall poisitions) on KITTI validation set is as follows:

Car  [email protected], 0.70, 0.70:
bev  AP:90.1572, 88.0972, 86.8397
3d   AP:88.8694, 78.7660, 77.5758

Pedestrian [email protected], 0.50, 0.50:
bev  AP:63.1125, 58.5591, 55.1318
3d   AP:60.2515, 55.5535, 50.1888

Cyclist [email protected], 0.50, 0.50:
bev  AP:85.6768, 71.9008, 67.1551
3d   AP:85.4238, 70.2774, 64.9804

The runtime is about 33 ms per sample.

5. Train

  • Train with a single GPU
python train.py --cfg_file tools/cfgs/kitti_models/voxset.yaml
  • Train with multiple GPUs
cd VoxSeT/tools
bash scripts/dist_train.sh --cfg_file ./cfgs/kitti_models/voxset.yaml

6. Test with a pretrained model

cd VoxSeT/tools
python test.py --cfg_file --cfg_file ./cfgs/kitti_models/voxset.yaml --ckpt ${CKPT_FILE}

Citation

@inproceedings{he2022voxset,
  title={Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds},
  author={Chenhang He, Ruihuang Li, Shuai Li and Lei Zhang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}
Owner
Billy HE
PhD candidate of The Hong Kong Polytechnic University
Billy HE
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022