A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

Overview

Documentation PyPI GitHub Documentation Open In Colab

English | 简体中文

A Deep Learning Based Knowledge Extraction Toolkit
for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials, and online demo for beginners.


Table of Contents


What's New

Jan, 2022

Dec, 2021

  • We have added dockerfile to create the enviroment automatically.

Nov, 2021

  • The demo of DeepKE, supporting real-time extration without deploying and training, has been released.
  • The documentation of DeepKE, containing the details of DeepKE such as source codes and datasets, has been released.

Oct, 2021

  • pip install deepke
  • The codes of deepke-v2.0 have been released.

August, 2020

  • The codes of deepke-v1.0 have been released.

Prediction Demo

There is a demonstration of prediction.


Model Framework

  • DeepKE contains a unified framework for named entity recognition, relation extraction and attribute extraction, the three knowledge extraction functions.
  • Each task can be implemented in different scenarios. For example, we can achieve relation extraction in standard, low-resource (few-shot) and document-level settings.
  • Each application scenario comprises of three components: Data including Tokenizer, Preprocessor and Loader, Model including Module, Encoder and Forwarder, Core including Training, Evaluation and Prediction.

Quick Start

DeepKE supports pip install deepke.
Take the fully supervised relation extraction for example.

Step1 Download the basic code

git clone https://github.com/zjunlp/DeepKE.git

Step2 Create a virtual environment using Anaconda and enter it.

We also provide dockerfile source code, which is located in the docker folder, to help users create their own mirrors.

conda create -n deepke python=3.8

conda activate deepke
  1. Install DeepKE with source code

    python setup.py install
    
    python setup.py develop
  2. Install DeepKE with pip

    pip install deepke

Step3 Enter the task directory

cd DeepKE/example/re/standard

Step4 Download the dataset

wget 120.27.214.45/Data/re/standard/data.tar.gz

tar -xzvf data.tar.gz

Step5 Training (Parameters for training can be changed in the conf folder)

We support visual parameter tuning by using wandb.

python run.py

Step6 Prediction (Parameters for prediction can be changed in the conf folder)

Modify the path of the trained model in predict.yaml.

python predict.py

Requirements

python == 3.8

  • torch == 1.5
  • hydra-core == 1.0.6
  • tensorboard == 2.4.1
  • matplotlib == 3.4.1
  • transformers == 3.4.0
  • jieba == 0.42.1
  • scikit-learn == 0.24.1
  • pytorch-transformers == 1.2.0
  • seqeval == 1.2.2
  • tqdm == 4.60.0
  • opt-einsum==3.3.0
  • wandb==0.12.7
  • ujson

Introduction of Three Functions

1. Named Entity Recognition

  • Named entity recognition seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, organizations, etc.

  • The data is stored in .txt files. Some instances as following:

    Sentence Person Location Organization
    本报北京9月4日讯记者杨涌报道:部分省区人民日报宣传发行工作座谈会9月3日在4日在京举行。 杨涌 北京 人民日报
    《红楼梦》是中央电视台和中国电视剧制作中心根据中国古典文学名著《红楼梦》摄制于1987年的一部古装连续剧,由王扶林导演,周汝昌、王蒙、周岭等多位红学家参与制作。 王扶林,周汝昌,王蒙,周岭 中国 中央电视台,中国电视剧制作中心
    秦始皇兵马俑位于陕西省西安市,1961年被国务院公布为第一批全国重点文物保护单位,是世界八大奇迹之一。 秦始皇 陕西省,西安市 国务院
  • Read the detailed process in specific README

    • STANDARD (Fully Supervised)

      Step1 Enter DeepKE/example/ner/standard. Download the dataset.

      wget 120.27.214.45/Data/ner/standard/data.tar.gz
      
      tar -xzvf data.tar.gz

      Step2 Training

      The dataset and parameters can be customized in the data folder and conf folder respectively.

      python run.py

      Step3 Prediction

      python predict.py
    • FEW-SHOT

      Step1 Enter DeepKE/example/ner/few-shot. Download the dataset.

      wget 120.27.214.45/Data/ner/few_shot/data.tar.gz
      
      tar -xzvf data.tar.gz

      Step2 Training in the low-resouce setting

      The directory where the model is loaded and saved and the configuration parameters can be cusomized in the conf folder.

      python run.py +train=few_shot

      Users can modify load_path in conf/train/few_shot.yaml to use existing loaded model.

      Step3 Add - predict to conf/config.yaml, modify loda_path as the model path and write_path as the path where the predicted results are saved in conf/predict.yaml, and then run python predict.py

      python predict.py

2. Relation Extraction

  • Relationship extraction is the task of extracting semantic relations between entities from a unstructured text.

  • The data is stored in .csv files. Some instances as following:

    Sentence Relation Head Head_offset Tail Tail_offset
    《岳父也是爹》是王军执导的电视剧,由马恩然、范明主演。 导演 岳父也是爹 1 王军 8
    《九玄珠》是在纵横中文网连载的一部小说,作者是龙马。 连载网站 九玄珠 1 纵横中文网 7
    提起杭州的美景,西湖总是第一个映入脑海的词语。 所在城市 西湖 8 杭州 2
  • Read the detailed process in specific README

    • STANDARD (Fully Supervised)

      Step1 Enter the DeepKE/example/re/standard folder. Download the dataset.

      wget 120.27.214.45/Data/re/standard/data.tar.gz
      
      tar -xzvf data.tar.gz

      Step2 Training

      The dataset and parameters can be customized in the data folder and conf folder respectively.

      python run.py

      Step3 Prediction

      python predict.py
    • FEW-SHOT

      Step1 Enter DeepKE/example/re/few-shot. Download the dataset.

      wget 120.27.214.45/Data/re/few_shot/data.tar.gz
      
      tar -xzvf data.tar.gz

      Step 2 Training

      • The dataset and parameters can be customized in the data folder and conf folder respectively.
      • Start with the model trained last time: modify train_from_saved_model in conf/train.yamlas the path where the model trained last time was saved. And the path saving logs generated in training can be customized by log_dir.
      python run.py

      Step3 Prediction

      python predict.py
    • DOCUMENT

      Step1 Enter DeepKE/example/re/document. Download the dataset.

      wget 120.27.214.45/Data/re/document/data.tar.gz
      
      tar -xzvf data.tar.gz

      Step2 Training

      • The dataset and parameters can be customized in the data folder and conf folder respectively.
      • Start with the model trained last time: modify train_from_saved_model in conf/train.yamlas the path where the model trained last time was saved. And the path saving logs generated in training can be customized by log_dir.
      python run.py

      Step3 Prediction

      python predict.py

3. Attribute Extraction

  • Attribute extraction is to extract attributes for entities in a unstructed text.

  • The data is stored in .csv files. Some instances as following:

    Sentence Att Ent Ent_offset Val Val_offset
    张冬梅,女,汉族,1968年2月生,河南淇县人 民族 张冬梅 0 汉族 6
    诸葛亮,字孔明,三国时期杰出的军事家、文学家、发明家。 朝代 诸葛亮 0 三国时期 8
    2014年10月1日许鞍华执导的电影《黄金时代》上映 上映时间 黄金时代 19 2014年10月1日 0
  • Read the detailed process in specific README

    • STANDARD (Fully Supervised)

      Step1 Enter the DeepKE/example/ae/standard folder. Download the dataset.

      wget 120.27.214.45/Data/ae/standard/data.tar.gz
      
      tar -xzvf data.tar.gz

      Step2 Training

      The dataset and parameters can be customized in the data folder and conf folder respectively.

      python run.py

      Step3 Prediction

      python predict.py

Notebook Tutorial

This toolkit provides many Jupyter Notebook and Google Colab tutorials. Users can study DeepKE with them.


Tips

  1. Using nearest mirror, like THU in China, will speed up the installation of Anaconda.
  2. Using nearest mirror, like aliyun in China, will speed up pip install XXX.
  3. When encountering ModuleNotFoundError: No module named 'past',run pip install future .
  4. It's slow to install the pretrained language models online. Recommend download pretrained models before use and save them in the pretrained folder. Read README.md in every task directory to check the specific requirement for saving pretrained models.
  5. The old version of DeepKE is in the deepke-v1.0 branch. Users can change the branch to use the old version. The old version has been totally transfered to the standard relation extraction (example/re/standard).
  6. It's recommended to install DeepKE with source codes. Because user may meet some problems in Windows system with 'pip'.

To do

In next version, we plan to add multi-modality knowledge extraction to the toolkit.

Meanwhile, we will offer long-term maintenance to fix bugs, solve issues and meet new requests. So if you have any problems, please put issues to us.


Citation

Please cite our paper if you use DeepKE in your work

@article{Zhang_DeepKE_A_Deep_2022,
author = {Zhang, Ningyu and Xu, Xin and Tao, Liankuan and Yu, Haiyang and Ye, Hongbin and Xie, Xin and Chen, Xiang and Li, Zhoubo and Li, Lei and Liang, Xiaozhuan and Yao, Yunzhi and Deng, Shumin and Zhang, Zhenru and Tan, Chuanqi and Huang, Fei and Zheng, Guozhou and Chen, Huajun},
journal = {http://arxiv.org/abs/2201.03335},
title = {{DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population}},
year = {2022}
}

Developers

Zhejiang University: Ningyu Zhang, Liankuan Tao, Haiyang Yu, Xiang Chen, Xin Xu, Xi Tian, Lei Li, Zhoubo Li, Shumin Deng, Yunzhi Yao, Hongbin Ye, Xin Xie, Guozhou Zheng, Huajun Chen

DAMO Academy: Zhenru Zhang, Chuanqi Tan, Fei Huang

Comments
  • NER 任务中出现KeyError报错

    NER 任务中出现KeyError报错

    Describe the question

    A clear and concise description of what the question is. NER 任务中,换成自己的标注数据集进行训练时会出现KeyError报错:KeyError: 'B-Disease'。 我已经在get_labels函数中添加了训练集中的标注标签,还是未能解决此问题,希望大佬给予帮助。

    Environment (please complete the following information):

    • OS: [e.g. mac / window]
    • Python Version [e.g. 3.6] Linux python 3.8

    Screenshots

    If applicable, add screenshots to help explain your problem. image

    Additional context

    Add any other context about the problem here.

    question 
    opened by ZZQ908268856 18
  • 运行/data/qinglong/knowledgeGraph/DeepKE/example/ner/standard中的run_bert.py对英文数据集conll2003进行实体识别出现错误

    运行/data/qinglong/knowledgeGraph/DeepKE/example/ner/standard中的run_bert.py对英文数据集conll2003进行实体识别出现错误

    报错信息如下 Traceback (most recent call last): File "/data/qinglong/knowledgeGraph/DeepKE/example/ner/standard/run_bert.py", line 135, in main train_features = convert_examples_to_features(train_examples, label_list, cfg.max_seq_length, tokenizer) File "/home/qinglong/.conda/envs/deepke/lib/python3.8/site-packages/deepke/name_entity_re/standard/tools/preprocess.py", line 92, in convert_examples_to_features label_ids.append(label_map[labels[i]]) KeyError: 'EU\tB-ORG' 经debug发现examples中的每一个样本数据中的 text_a = 'EU B-ORG rejects O German B-MISC call O to O boycott O British B-MISC lamb O . O ' labellist = ['EU\tB-ORG', 'rejects\tO', 'German\tB-MISC', 'call\tO', 'to\tO', 'boycott\tO', 'British\tB-MISC', 'lamb\tO', '.\tO'] textlist = ['EU\tB-ORG\n', 'rejects\tO\n', 'German\tB-MISC\n', 'call\tO\n', 'to\tO\n', 'boycott\tO\n', 'British\tB-MISC\n', 'lamb\tO\n', '.\tO\n'] 而中文数据集中的 examples 中的 text_a ='海 钓 比 赛 地 点 在 厦 门 与 金 门 之 间 的 海 域 。'

    bug 
    opened by qinglongheu 16
  • Cnschema自带的关系抽取模型报错

    Cnschema自带的关系抽取模型报错

    Traceback (most recent call last): File "D:/MyProject/python/DeepKE-main/example/re/standard/predict.py", line 120, in main model.load(cfg.fp, device=device) File "D:\MyProject\python\DeepKE-main\src\deepke\relation_extraction\standard\models\BasicModule.py", line 19, in load self.load_state_dict(torch.load(path, map_location=device)) File "F:\Anaconda3\envs\DeepKE-main\lib\site-packages\torch\nn\modules\module.py", line 1482, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(RuntimeError: Error(s) in loading state_dict for PCNN: Missing key(s) in state_dict: "embedding.wordEmbed.weight", "embedding.entityPosEmbed.weight", "embedding.attribute_keyPosEmbed.weight", "embedding.layer_norm.weight", "embedding.layer_norm.bias", "cnn.convs.0.weight", "cnn.convs.1.weight", "cnn.convs.2.weight", "cnn.activations.prelu.weight", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias". Unexpected key(s) in state_dict: "bert.embeddings.position_ids", "bert.embeddings.word_embeddings.weight", "bert.embeddings.position_embeddings.weight", "bert.embeddings.token_type_embeddings.weight", "bert.embeddings.LayerNorm.weight", "bert.embeddings.LayerNorm.bias", "bert.encoder.layer.0.attention.self.query.weight", "bert.encoder.layer.0.attention.self.query.bias", "bert.encoder.layer.0.attention.self.key.weight", "bert.encoder.layer.0.attention.self.key.bias", "bert.encoder.layer.0.attention.self.value.weight", "bert.encoder.layer.0.attention.self.value.bias", "bert.encoder.layer.0.attention.output.dense.weight", "bert.encoder.layer.0.attention.output.dense.bias", "bert.encoder.layer.0.attention.output.LayerNorm.weight", "bert.encoder.layer.0.attention.output.LayerNorm.bias", "bert.encoder.layer.0.intermediate.dense.weight", "bert.encoder.layer.0.intermediate.dense.bias", "bert.encoder.layer.0.output.dense.weight", "bert.encoder.layer.0.output.dense.bias", "bert.encoder.layer.0.output.LayerNorm.weight", "bert.encoder.layer.0.output.LayerNorm.bias", "bert.pooler.dense.weight", "bert.pooler.dense.bias", "bilstm.rnn.weight_ih_l0", "bilstm.rnn.weight_hh_l0", "bilstm.rnn.bias_ih_l0", "bilstm.rnn.bias_hh_l0", "bilstm.rnn.weight_ih_l0_reverse", "bilstm.rnn.weight_hh_l0_reverse", "bilstm.rnn.bias_ih_l0_reverse", "bilstm.rnn.bias_hh_l0_reverse", "fc.weight", "fc.bias". Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.进程已结束,退出代码1

    bug 
    opened by HojaMuerta 14
  • windows10  python由3.8降级到3.6

    windows10 python由3.8降级到3.6

    Describe the bug

    A clear and concise description of what the bug is.

    各种bug,我刚开始创建了一个虚拟环境deepke,然后pip install deepke ,但是各种报错,我想问一下是不是windows下不行吖?有没有windows下的详细安装教程提供一下

    Environment (please complete the following information):

    • OS: [e.g. mac / window]
    • Python Version [e.g. 3.6]

    windows python3.6

    Screenshots

    If applicable, add screenshots to help explain your problem.

    Additional context

    Add any other context about the problem here.

    bug 
    opened by liuxiaobei727 12
  • 运行/data/qinglong/knowledgeGraph/DeepKE/example/ner/standard中的run_bert.py对英文数据集conll2003进行实体识别出现错误

    运行/data/qinglong/knowledgeGraph/DeepKE/example/ner/standard中的run_bert.py对英文数据集conll2003进行实体识别出现错误

    /home/qinglong/.conda/envs/deepke/lib/python3.8/site-packages/seqeval/metrics/sequence_labeling.py:171: UserWarning: [CLS] seems not to be NE tag. warnings.warn('{} seems not to be NE tag.'.format(chunk)) Traceback (most recent call last): File "/data/qinglong/knowledgegraph/DeepKE/example/ner/standard/run_bert.py", line 250, in main report = classification_report(y_true, y_pred,digits=4) File "/home/qinglong/.conda/envs/deepke/lib/python3.8/site-packages/seqeval/metrics/sequence_labeling.py", line 680, in classification_report target_names_pred = {type_name for type_name, _, _ in get_entities(y_pred, suffix)} File "/home/qinglong/.conda/envs/deepke/lib/python3.8/site-packages/seqeval/metrics/sequence_labeling.py", line 182, in get_entities _validate_chunk(chunk, suffix) File "/home/qinglong/.conda/envs/deepke/lib/python3.8/site-packages/seqeval/metrics/sequence_labeling.py", line 170, in _validate_chunk if not chunk.startswith(('B-', 'I-', 'E-', 'S-')): AttributeError: 'int' object has no attribute 'startswith' 经debug发现y_pred出现了标签中没有的标签0 y_pred =[['I-MISC', 'I-PER', 'I-MISC', 'B-MISC', 'I-LOC', 'I-ORG', '[CLS]', 'I-LOC', 'I-LOC', 'B-ORG', 'I-MISC', 'I-LOC', 'B-ORG', 0, 'I-MISC', 'I-ORG', 'B-ORG', 'I-MISC', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'I-LOC', '[CLS]', 'I-MISC', 'B-MISC', 'I-MISC', 'B-MISC', 'I-ORG', 'I-MISC', 'I-LOC', 'I-ORG', 'I-ORG', 'I-LOC', '[CLS]', 'I-MISC', '[CLS]', 'I-LOC', 'I-LOC', 'I-LOC', 'I-LOC', 'I-LOC', '[SEP]', '[SEP]', '[SEP]', '[SEP]', 'O', '[SEP]', '[CLS]', '[SEP]', '[CLS]', 'I-ORG', 'I-LOC', 'O', 'O', 'I-ORG', 'I-ORG', 'I-MISC', '[CLS]', '[CLS]', 'I-MISC', 'I-ORG', 'I-MISC', 'I-ORG', 'I-MISC', 'B-MISC', 'I-LOC', 'I-LOC', '[SEP]', '[SEP]', 'I-ORG', 'B-LOC', '[CLS]', '[CLS]', 'B-MISC', '[CLS]', '[SEP]', 'I-MISC', 'I-MISC', 'O', 'I-ORG', 'I-ORG', 'I-MISC', 'O', '[CLS]', 'I-ORG', 'I-MISC', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'B-ORG', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-MISC', 'I-ORG', 'I-MISC', '[CLS]', '[SEP]', '[CLS]', 'I-ORG', 'I-ORG', '[CLS]', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', '[CLS]', 'I-MISC', 'O', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] 这个0是把‘o’认错了吗

    bug 
    opened by qinglongheu 10
  • ner-multimodal 模型无法训练

    ner-multimodal 模型无法训练

    Describe the question

    A clear and concise description of what the question is. 训练时一直出现这样的错误: OSError: Can't load config for 'openai/clip-vit-base-patch32'. Make sure that:

    • 'openai/clip-vit-base-patch32' is a correct model identifier listed on 'https://huggingface.co/models'

    • or 'openai/clip-vit-base-patch32' is the correct path to a directory containing a config.json file

    Environment (please complete the following information):

    • OS: [e.g. mac / window]
    • Python Version [e.g. 3.6]

    Screenshots

    If applicable, add screenshots to help explain your problem.

    Additional context

    Add any other context about the problem here.

    question 
    opened by 3525355094 10
  • BERT在大规模数据集上运行报错

    BERT在大规模数据集上运行报错

    你好,我重构了百度的数据集,重构后大概又30多w条。其中某些数据在其他模型预处理的时候会报错,但舍弃这些数据后最终跑通了,但是BERT模型遇到了如下问题,看上去应该是维度不太匹配,想请教一下问题可能会出在哪里,谢谢 >, TensorInfo<T, IndexType>, TensorInfo<long, IndexType>, int, int, IndexType, IndexType, long) [with T = float, IndexType = unsigned int, DstDim = 2, SrcDim = 2, IdxDim = -2, IndexIsMajor = true]: block: [195,0,0], thread: [31,0,0] AssertionsrcIndex < srcSelectDimSize failed. Traceback (most recent call last): File "main.py", line 82, in <module> macro_f1, micro_f1 = validate(test_dataloader, model, device, config) File "/home/***/deepke/deepke/trainer.py", line 53, in validate x = [i.to(device) for i in x] File "/home/***/deepke/deepke/trainer.py", line 53, in <listcomp> x = [i.to(device) for i in x] RuntimeError: CUDA error: device-side assert triggered

    question 
    opened by zhang-yunke 10
  • 在re中使用lm模型报错The size of tensor a (48) must match the size of tensor b (512) at non-singleton dimension 3

    在re中使用lm模型报错The size of tensor a (48) must match the size of tensor b (512) at non-singleton dimension 3

    Traceback (most recent call last): File "predict.py", line 141, in main y_pred = model(x) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/deepke/relation_extraction/standard/models/LM.py", line 22, in forward a = self.bert(word, attention_mask=mask) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/transformers/modeling_bert.py", line 833, in forward encoder_outputs = self.encoder( File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/transformers/modeling_bert.py", line 476, in forward layer_outputs = layer_module( File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/transformers/modeling_bert.py", line 398, in forward self_attention_outputs = self.attention( File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/transformers/modeling_bert.py", line 333, in forward self_outputs = self.self( File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/WYF/.conda/envs/deepke/lib/python3.8/site-packages/transformers/modeling_bert.py", line 262, in forward attention_scores = attention_scores + attention_mask RuntimeError: The size of tensor a (48) must match the size of tensor b (512) at non-singleton dimension 3

    question 
    opened by sayakawaiiyo 9
  • NER模型预测为空

    NER模型预测为空

    Describe the question

    我标注了一些数据,但是无论怎样,执行predict后,预测的实体都是空。甚至尝试预测了train data中的一条数据,结果同样为空。 我使用是 standard NER模型。 使用的预训练模型是在配置文件中是这样的,配置在文件夹的这里:\conf\hydra\model\bert.yaml,在这个文件中配置了我本地的pre model

    我不清楚是哪里出了问题。

    Environment (please complete the following information):

    • OS: [e.g. mac / window]
    • Python Version [e.g. 3.6]

    Screenshots

    If applicable, add screenshots to help explain your problem.

    Additional context

    Add any other context about the problem here.

    question 
    opened by ume-technology 8
  • when run ner, i got error : Key 'bert_model' is not in struct

    when run ner, i got error : Key 'bert_model' is not in struct

    Traceback (most recent call last): File "run_bert.py", line 93, in main tokenizer = BertTokenizer.from_pretrained(cfg.bert_model, do_lower_case=cfg.do_lower_case) omegaconf.errors.ConfigAttributeError: Key 'bert_model' is not in struct full_key: bert_model reference_type=Optional[Dict[Union[str, Enum], Any]] object_type=dict

    enhancement 
    opened by JxuHenry 8
  • Docker 环境下缓存工具版本错误

    Docker 环境下缓存工具版本错误

    Describe the question

    A clear and concise description of what the question is.

    在Docker环境下,python setup.py install过程中失败,提示是 cachetools 5.2.0 is installed but cachetools<5.0,>=2.0.0 is required by {'google-auth'}

    Environment (please complete the following information):

    • OS: window10、Dockers20.10。17
    • Python Version : 3.8.13

    Screenshots

    If applicable, add screenshots to help explain your problem. image

    Additional context

    • 我觉得README里应该添加如何使用Docker的说明,属实是走了不少的弯路
    help wanted question dependencies 
    opened by thredreams 6
Releases(2.1.2)
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022