PyTorch Personal Trainer: My framework for deep learning experiments

Related tags

Deep Learningptpt
Overview

Alex's PyTorch Personal Trainer (ptpt)

(name subject to change)

This repository contains my personal lightweight framework for deep learning projects in PyTorch.

Disclaimer: this project is very much work-in-progress. Although technically useable, it is missing many features. Nonetheless, you may find some of the design patterns and code snippets to be useful in the meantime.

Installation

Simply run python -m build in the root of the repo, then run pip install on the resulting .whl file.

No pip package yet..

Usage

Import the library as with any other python library:

from ptpt.trainer import Trainer, TrainerConfig
from ptpt.log import debug, info, warning, error, critical

The core of the library is the trainer.Trainer class. In the simplest case, it takes the following as input:

net:            a `nn.Module` that is the model we wish to train.
loss_fn:        a function that takes a `nn.Module` and a batch as input.
                it returns the loss and optionally other metrics.
train_dataset:  the training dataset.
test_dataset:   the test dataset.
cfg:            a `TrainerConfig` instance that holds all
                hyperparameters.

Once this is instantiated, starting the training loop is as simple as calling trainer.train() where trainer is an instance of Trainer.

cfg stores most of the configuration options for Trainer. See the class definition of TrainerConfig for details on all options.

Examples

An example workflow would go like this:

Define your training and test datasets:

transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('../data', train=False, download=True, transform=transform)

Define your model:

# in this case, we have imported `Net` from another file
net = Net()

Define your loss function that calls net, taking the full batch as input:

# minimising classification error
def loss_fn(net, batch):
    X, y = batch
    logits = net(X)
    loss = F.nll_loss(logits, y)

    pred = logits.argmax(dim=-1, keepdim=True)
    accuracy = 100. * pred.eq(y.view_as(pred)).sum().item() / y.shape[0]
    return loss, accuracy

Optionally create a configuration object:

# see class definition for full list of parameters
cfg = TrainerConfig(
    exp_name = 'mnist-conv',
    batch_size = 64,
    learning_rate = 4e-4,
    nb_workers = 4,
    save_outputs = False,
    metric_names = ['accuracy']
)

Initialise the Trainer class:

trainer = Trainer(
    net=net,
    loss_fn=loss_fn,
    train_dataset=train_dataset,
    test_dataset=test_dataset,
    cfg=cfg
)

Call trainer.train() to begin the training loop

trainer.train() # Go!

See more examples here.

Motivation

I found myself repeating a lot of same structure in many of my deep learning projects. This project is the culmination of my efforts refining the typical structure of my projects into (what I hope to be) a wholly reusable and general-purpose library.

Additionally, there are many nice theoretical and engineering tricks that are available to deep learning researchers. Unfortunately, a lot of them are forgotten because they fall outside the typical workflow, despite them being very beneficial to include. Another goal of this project is to transparently include these tricks so they can be added and removed with minimal code change. Where it is sane to do so, some of these could be on by default.

Finally, I am guilty of forgetting to implement decent logging: both of standard output and of metrics. Logging of standard output is not hard, and is implemented using other libraries such as rich. However, metric logging is less obvious. I'd like to avoid larger dependencies such as tensorboard being an integral part of the project, so metrics will be logged to simple numpy arrays. The library will then provide functions to produce plots from these, or they can be used in another library.

TODO:

  • Make a todo.

References

Citations

Owner
Alex McKinney
Student at Durham University. I do a variety of things. I use Arch btw
Alex McKinney
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022