Subdivision-based Mesh Convolutional Networks

Overview

Subdivision-based Mesh Convolutional Networks

The official implementation of SubdivNet in our paper,

Subdivion-based Mesh Convolutional Networks

teaser

Requirements

  • python3.7+
  • CUDA 10.1+
  • Jittor

To install python requirements:

pip install -r requirements.txt

Fetch Data

This repo provides training scripts for classification and segementation, on the following datasets,

  • shrec11-split10
  • shrec11-split16
  • cubes
  • manifold40 (based on ModelNet40)
  • humanbody
  • coseg-aliens

To download the preprocessed data, run

sh scripts/<DATASET_NAME>/get_data.sh

Manfold40 (before remeshed) can be downloaded via this link.

Training

To train the model(s) in the paper, run this command:

sh scripts/<DATASET_NAME>/train.sh

To speed up training, you can use multiple gpus. First install OpenMPI:

sudo apt install openmpi-bin openmpi-common libopenmpi-dev

Then run the following command,

CUDA_VISIBLE_DEVICES="2,3" mpirun -np 2 sh scripts/<DATASET_NAME>/train.sh

Evaluation

To evaluate the model on a dataset, run:

sh scripts/<DATASET_NAME>/test.sh

The pretrained weights are provided. Run the following command to download them.

sh scripts/<DATASET_NAME>/get_pretrained.sh

Visualize

After testing the segmentation network, there will be colored shapes in a results directory. Use your favorite 3D viewer to check them.

Apply to your own data

To create your own data with subdivision sequence connectivity, you may use our provided tool that implements the MAPS algorithm. You may also refer to NeuralSubdivision, as they also provide a MATLAB scripts for remeshing.

To run our implemented MAPS algorithm, first install the following python dependecies,

triangle
pymeshlab
shapely
sortedcollections
networkx
rtree

Then run datagen_maps.py to remesh your meshes.

Cite

Please cite our paper if you use this code in your own work:

@misc{hu2021subdivisionbased,
      title={Subdivision-Based Mesh Convolution Networks}, 
      author={Shi-Min Hu and Zheng-Ning Liu and Meng-Hao Guo and Jun-Xiong Cai and Jiahui Huang and Tai-Jiang Mu and Ralph R. Martin},
      year={2021},
      eprint={2106.02285},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zheng-Ning Liu
Zheng-Ning Liu
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023