p-tuning for few-shot NLU task

Overview

p-tuning_NLU

Overview

这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后,再接一个lstm和mlp用于关联各prompt, 与最初p-tuning提出《GPT Understands, Too》 的实现一样,结果显示在few-shot上p-tuning非常接近finetune效果。

Dataset

数据是情感分类,下载地址百度网盘 提取码:osja

Evaluation

1. finetune

python few_shot_finetune.py

测试集效果:

epoch: 0 - acc: 0.897679 - best_test_acc: 0.8976788252013264
epoch: 1 - acc: 0.876362 - best_test_acc: 0.8976788252013264
epoch: 2 - acc: 0.884889 - best_test_acc: 0.8976788252013264
epoch: 3 - acc: 0.884415 - best_test_acc: 0.8976788252013264
epoch: 4 - acc: 0.884415 - best_test_acc: 0.8976788252013264

全量参数对小样本进行finetune,仅1个epoch就收敛了

2. p-tuning

python few_shot_ptuning.py

测试集效果:

epoch: 0 - acc: 0.546660 - best_test_acc: 0.5466603505447655
epoch: 1 - acc: 0.687826 - best_test_acc: 0.6878256750355282
epoch: 2 - acc: 0.737091 - best_test_acc: 0.7370914258645191
epoch: 3 - acc: 0.722406 - best_test_acc: 0.7370914258645191
epoch: 4 - acc: 0.776883 - best_test_acc: 0.7768829938417812
epoch: 5 - acc: 0.805306 - best_test_acc: 0.8053055423969683
epoch: 6 - acc: 0.833254 - best_test_acc: 0.8332543818095689
epoch: 7 - acc: 0.837991 - best_test_acc: 0.8379914732354334
epoch: 8 - acc: 0.854571 - best_test_acc: 0.8545712932259593
epoch: 9 - acc: 0.858361 - best_test_acc: 0.8583609663666508
epoch: 10 - acc: 0.856466 - best_test_acc: 0.8583609663666508
epoch: 11 - acc: 0.853150 - best_test_acc: 0.8583609663666508
epoch: 12 - acc: 0.868783 - best_test_acc: 0.8687825675035529
epoch: 13 - acc: 0.877309 - best_test_acc: 0.877309332070109
epoch: 14 - acc: 0.873993 - best_test_acc: 0.877309332070109
epoch: 15 - acc: 0.877783 - best_test_acc: 0.8777830412126955
epoch: 16 - acc: 0.882994 - best_test_acc: 0.8829938417811464
epoch: 17 - acc: 0.881573 - best_test_acc: 0.8829938417811464
epoch: 18 - acc: 0.889626 - best_test_acc: 0.8896257697773567
epoch: 19 - acc: 0.877783 - best_test_acc: 0.8896257697773567

仅prompt_embed和lstm及mlp去做p-tuning,20个epoch后接近收敛,acc=0.8896,略小于finetun的acc 0.8977

附上苏神结果对比:

img

MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023