PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

Related tags

Deep Learningfiery
Overview

FIERY

This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in:

FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras

Anthony Hu, Zak Murez, Nikhil Mohan, Sofía Dudas, Jeffrey Hawke, ‪Vijay Badrinarayanan, Roberto Cipolla and Alex Kendall

preprint (2021)
Blog post

FIERY future prediction
Multimodal future predictions by our bird’s-eye view network.
Top two rows: RGB camera inputs. The predicted future trajectories and segmentations are projected to the ground plane in the images.
Bottom row: future instance prediction in bird’s-eye view in a 100m×100m capture size around the ego-vehicle, which is indicated by a black rectangle in the center.

If you find our work useful, please consider citing:

@inproceedings{fiery2021,
  title     = {{FIERY}: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras},
  author    = {Anthony Hu and Zak Murez and Nikhil Mohan and Sofía Dudas and 
               Jeffrey Hawke and Vijay Badrinarayanan and Roberto Cipolla and Alex Kendall},
  booktitle = {arXiv preprint},
  year = {2021}
}

Setup

  • Create the conda environment by running conda env create.

🏄 Prediction

🔥 Pre-trained models

All the configs are in the folder fiery/configs

Config Dataset Past context Future horizon BEV size IoU VPQ
baseline.yml NuScenes 1.0s 2.0s 100mx100m (50cm res.) 37.0 29.5
lyft/baseline.yml Lyft 0.8s 2.0s 100mx100m (50cm res.) 36.6 29.5
literature/pon_setting.yml NuScenes 0.0s 0.0s 100mx50m (25cm res.) 39.9 -
literature/lift_splat_setting.yml NuScenes 0.0s 0.0s 100mx100m (50cm res.) 36.7 -
literature/fishing_setting.yml NuScenes 1.0s 2.0s 32.0mx19.2m (10cm res.) 58.5 -

🏊 Training

To train the model from scratch on NuScenes:

  • Run python train.py --config fiery/configs/baseline.yml DATASET.DATAROOT ${NUSCENES_DATAROOT}

🙌 Credits

Big thanks to Piotr Sokólski (@pyetras) for the panoptic metric implementation, and to Hannes Liik (@hannesliik) for the awesome future trajectory visualisation on the ground plane.

Comments
  • loss < 0

    loss < 0

    Hi, thanks for your great work. I have a question about loss. When i trained model for my data, the loss < 0 at epoch_0, is this normal? Config: baseline.yaml in the project image

    opened by YiJiangYue 6
  • All losses become NaN after about 1 epoch of training

    All losses become NaN after about 1 epoch of training

    Hi,

    Thank you for sharing this great work!

    When I ran the training code, I got NaN for all losses after about 1 epoch of training. This problem is reproduced whenever I run the training code. (I have tested it three times.)

    I followed the same environment setting with anaconda, and also used the same hyper-parameters. (The only difference is that our PyTorch version is 1.7.1 and yours is 1.7.0, and all other modules are the same as yours.)

    Please share your idea about this problem, if you have any. Thanks!

    opened by jwookyoo 6
  • Question about the projection_to_birds_eye_view function

    Question about the projection_to_birds_eye_view function

    Congratulations on your great work!

    I want to follow your work for future research and I have some questions about your released code below:

    In the fiery.py file of your code, can you provide more details about the get_geometry function and the projection_to_birds_eye_view function? I'm so confused about how they actually work, especially, the code shown in the red box below. 112a26f400a5c24af541a6423977362

    Thank you very much. Looking forward to your reply!

    opened by taylover-pei 5
  • AttributeError: 'FigureCanvasTkAgg' object has no attribute 'renderer'

    AttributeError: 'FigureCanvasTkAgg' object has no attribute 'renderer'

    Hello, recently I found your great work and I want to try the "Visualisation" part locally to check the results, but after I run the command of python visualise.py --checkpoint ${CHECKPOINT_PATH} my terminal pop out an error like the following: image

    I try to solve it by searching on google but it does not help, could you help me if you know how to solve it. Many thanks.

    opened by Ianpengg 3
  • May I know where is the checkpoint getting saved?

    May I know where is the checkpoint getting saved?

    I dont see anywhere that the checkpoint is getting saved and while resuming the training, I am getting an error that "size mismatch for model.temporal_model.model.1.aggregation.0.conv.weight"

    opened by pranavi77 2
  • The result of fiery static

    The result of fiery static

    If I want to get the result of Fiery Static of Setting2 in Table I of your paper, should I use the config in "configs/single_timeframe.yml"? When I train the network using this config file from scratch, the IOU is 39.2 when I use the "evaluate.py". However, in the paper, the result is 35.8. Is there another parameter needed to be modified, when I want the network to be one frame as input and the segmentation result of the present frame as output?

    opened by DFLyan 2
  • Question about panoptic_metrics function

    Question about panoptic_metrics function

    Hi,

    Would you be able to explain how the panoptic_metrics function works? (Code linked here: https://github.com/wayveai/fiery/blob/master/fiery/metrics.py#L137) Especially, I wonder why 'void' is included for 'combine_mask', and why 'background' should be changed from 0 to 1.

    Also, It is hard to understand the code under the comment "# hack for bincounting 2 arrays together". (Code linked here: https://github.com/wayveai/fiery/blob/master/fiery/metrics.py#L168)

    Thank you!

    opened by jwookyoo 2
  • Is future_egopose necessary for inference?

    Is future_egopose necessary for inference?

    Thanks for your great work. I have a little question about future ego pose during inference? I may find a little tricky because flow prediction is a module before motion planning. In real cases, the flow prediction module has no chance of getting future ego pose. But the code may show future ego pose is irreplacable in inference. When I turn to None, the inference doesn't work.

    opened by synsin0 1
  • clarification evaluation

    clarification evaluation

    Hello and many thanks for your work and sharing your code.

    I have a question regarding the way you compute your IoU metric and how it compares against Lift-splat.

    You use stat_scores_multiple_classes from PLmetrics to compute the iou. Correct me if I am wrong, but by default the threshold of this method is 0.5

    On the other hand, in get_batch_iou of LFS they use a threshold of 0: pred = (preds > 0) https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py

    Wouldn't this have an impact on the evaluation results ,and thus, on how you compare to them ?

    opened by F-Barto 1
  • Question on deleting unused layers and self.downsample

    Question on deleting unused layers and self.downsample

    Hi, I couldn't understand how the self.downsample parameter was set (why 8 and 16 and how it affects upsampling_in_channels) and why delete_unused_layers is required in the encoder model. I tried to search the efficientnet-pytorch implementation and couldn't find any reference for this operation. Could you explain briefly why this is required? Thank you!

    opened by benhgm 1
  • question about instance_flow

    question about instance_flow

    Thanks for your excellent work! I have some questions about instance_flow. warped_instance_seg = {} # t0,f01-->t1; t1,f12-->t2; t2,f23-->t3 # t1,f10-->t0; t2,f21-->t1 for t in range(1, seq_len): warped_inst_t = warp_features(instance_img[t].unsqueeze(0).unsqueeze(1).float(), # 1, 1, 200, 200 future_egomotion_inv[t - 1].unsqueeze(0), mode='nearest', spatial_extent=spatial_extent) warped_instance_seg[t] = warped_inst_t[0, 0] In your paper, "Finally, we obtain feature flow labels by comparing the position of the instance centers of gravity between two consecutive timesteps".I think the code should convert t to t-1, not t-1 to t. How can it get the feature flow? I'm really confuesd about it. I'm looking forward your replying.

    opened by qfwysw 1
  • Bad results when evaluating pretrained checkpoints

    Bad results when evaluating pretrained checkpoints

    Hi. Thanks for your great work. I followed your instructions in README.md to extract nuscenes dataset. I ran evaluate.py with official pretrained checkpoint (https://github.com/wayveai/fiery/releases/download/v1.0/fiery.ckpt) but got the output as follows: iou 53.5 & 28.6 pq 39.8 & 18.0 sq 69.4 & 66.3 rq 57.4 & 27.1 Is there something wrong? It seems to be much lower than the results you got.

    opened by huangzhengxiang 1
  • Dear author,the total loss value <0 ,is it normal?

    Dear author,the total loss value <0 ,is it normal?

    Dear author, I just run the code without no change, during the training ,I got the total sum loss with the value <0 .

    It looks so weird. Is that caused by the setting of the "uncertainty" ? Is that normal? Really thanks.

    opened by emilyemliyM 0
  • Pytorch Lightning stuck the computer and finally killed

    Pytorch Lightning stuck the computer and finally killed

    Thanks for your great work. I'd like to reproduce the training process, but I encountered an error. That is when I use multi-GPU distributed training process, the logging information seems normal, but afterwards the remote server stuck and connection reset and finally the process is killed. My remote server is an independent machine with 4xRTX3090. Is there any issues with the pytorch lightning distributed training that may cause my failure?

    opened by synsin0 1
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023