A new data augmentation method for extreme lighting conditions.

Overview

Random Shadows and Highlights

This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme lighting conditions.

Example:

from RandomShadowsHighlights import RandomShadows

 transform = transforms.Compose([
   transforms.RandomHorizontalFlip(),
   RandomShadows(p=0.8, high_ratio=(1,2), low_ratio=(0,1), left_low_ratio=(0.4,0.8),
                 left_high_ratio=(0,0.3), right_low_ratio=(0.4,0.8), right_high_ratio=(0,0.3)),
   transforms.ToTensor(),
   transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
 ])

If you find this code useful for your research, please consider citing:

@Misc{Mazhar2021arXiv,
  author  = {Mazhar, Osama and Kober, Jens},
  note    = {arXiv:2101.05361 [cs.CV]},
  title   = {{Random Shadows and Highlights}: A New Data Augmentation Method for Extreme Lighting Conditions},
  year    = {2021},
  code    = {https://github.com/OsamaMazhar/Random-Shadows-Highlights},
  file    = {https://arxiv.org/pdf/2101.05361.pdf},
  project = {OpenDR},
  url     = {https://arxiv.org/abs/2101.05361},
}

Requirements:

torch, torchvision, numpy, cv2, PIL, argparse

In case you want to use Disk-Augmenter for comparison, then install scikit-learn as well.

Steps:

To test on TinyImageNet, the dataset needs to be converted into PyTorch dataset format. This can be done by following instructions on this repo.

Also, for EfficientNet, install EfficientNet-PyTorch from here.

To start training, use the following command:

python main.py --model_dir outputs --filename output.txt --num_epochs 20 --model_name EfficientNet --dataset TinyImageNet

For CIFAR10 or CIFAR100, use argument --dataset CIFAR10 or --dataset CIFAR100.

To train on "AlexNet", use --model_name AlexNet.

If you have any questions about this code, please do not hesitate to contact me here.

Owner
Osama Mazhar
Osama Mazhar
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022