[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

Overview

This is the official implementation of our paper:

Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation." IEEE International Conference on Robotics and Automation (ICRA) 2022.

Abstract

Task-relevant grasping is critical for industrial assembly, where downstream manipulation tasks constrain the set of valid grasps. Learning how to perform this task, however, is challenging, since task-relevant grasp labels are hard to define and annotate. There is also yet no consensus on proper representations for modeling or off-the-shelf tools for performing task-relevant grasps. This work proposes a framework to learn task-relevant grasping for industrial objects without the need of time-consuming real-world data collection or manual annotation. To achieve this, the entire framework is trained solely in simulation, including supervised training with synthetic label generation and self-supervised, hand-object interaction. In the context of this framework, this paper proposes a novel, object-centric canonical representation at the category level, which allows establishing dense correspondence across object instances and transferring task-relevant grasps to novel instances. Extensive experiments on task-relevant grasping of densely-cluttered industrial objects are conducted in both simulation and real-world setups, demonstrating the effectiveness of the proposed framework.

Bibtex

@article{wen2021catgrasp,
  title={CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation},
  author={Wen, Bowen and Lian, Wenzhao and Bekris, Kostas and Schaal, Stefan},
  journal={ICRA 2022},
  year={2022}
}

Supplementary Video

Click to watch

ICRA 2022 Presentation Video

Quick Setup

We provide docker environment and setup is as easy as below a few lines.

  • If you haven't installed docker, firstly install (https://docs.docker.com/get-docker/).

  • Run

    docker pull wenbowen123/catgrasp:latest
    
  • To enter the docker, run below

    cd  docker && bash run_container.sh
    cd /home/catgrasp && bash build.sh
    

    Now the environment is ready to run training or testing.

Data

  catgrasp
  ├── artifacts
  ├── data
  └── urdf

Testing

python run_grasp_simulation.py

You should see the demo starting like below. You can play with the settings in config_run.yml, including changing different object instances within the category while using the same framework

Training

In the following, we take the nut category as an example to walk through

  • Compute signed distance function for all objects of the category

    python make_sdf.py --class_name nut
    
  • Pre-compute offline grasps of training objects. This generates and evaluates grasp qualities regardless of their task-relevance. To visualize and debug the grasp quality evaluation change to --debug 1

    python generate_grasp.py --class_name nut --debug 0
    
  • Self-supervised task-relevance discovery in simulation

    python pybullet_env/env_semantic_grasp.py --class_name nut --debug 0
    

    Changing --debug 0 to --debug 1, you are able to debug and visualize the process

    The affordance results will be saved in data/object_models. The heatmap file XXX_affordance_vis can be visualized as in the below image, where warmer area means higher task-relevant grasping region P(T|G)

  • Make the canonical model that stores category-level knowledge

    python make_canonical.py --class_name nut
    

  • Training data generation of piles

    python generate_pile_data.py --class_name nut
    

  • Process training data, including generating ground-truth labels

    python tool.py
    
  • To train NUNOCS net, examine the settings in config_nunocs.yml, then

    python train_nunocs.py
    
  • To train grasping-Q net, examine the settings in config_grasp.yml, then

    python train_grasp.py
    
  • To train instance segmentation net, examine the settings in PointGroup/config/config_pointgroup.yaml, then

    python train_pointgroup.py
    
Owner
Bowen Wen
CS PhD || Robotics, Computer Vision || [email protected][X]
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022