Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Overview

Time-Sensitive-QA

The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset is collected by UCSB NLP group and issued under BSD 3-Clause "New" or "Revised" License.

This dataset is aimed to study the existing reading comprehension models' capability to perform temporal reasoning, and see whether they are sensitive to the temporal description in the given question. An example of annotated question-answer pairs are listed as follows: overview

Repo Structure

  • dataset/: this folder contains all the dataset
  • dataset/annotated*: these files are the annotated (passage, time-evolving facts) by crowd-workers.
  • dataset/train-dev-test: these files are synthesized using templates, including both easy and hard versions.
  • BigBird/: all the running code for BigBird models
  • FiD/: all the running code for fusion-in-decoder models

Requirements

  1. BigBird-Specific Requirements
  1. FiD-Specific Requirements

BigBird

Extractive QA baseline model, first switch to the BigBird Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=8

Running Evaluation (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=eval model_path=[YOUR_MODEL]

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=2

Running Evaluation (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard mode=eval cuda=[DEVICE] model_path=[YOUR_MODEL]

Fusion-in Decoder

Generative QA baseline model, first switch to the FiD Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/nq_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/tqa_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

License

The data and code are released under BSD 3-Clause "New" or "Revised" License.

Report

Please create an issue or send an email to [email protected] for any questions/bugs/etc.

Owner
wenhu chen
Research Scientist at Google AI, major in NLP/DL; Incoming Assistant Professor
wenhu chen
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022