Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Overview

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

This is the code for implementing the MADDPG algorithm presented in the paper: Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning. It is configured to be run in conjunction with environments from the (https://github.com/qian18long/epciclr2020/tree/master/mpe_local). We show our gif results here (https://sites.google.com/view/epciclr2020/). Note: this codebase has been restructured since the original paper, and the results may vary from those reported in the paper.

Installation

  • Install tensorflow 1.13.1
pip install tensorflow==1.13.1
  • Install OpenAI gym
pip install gym==0.13.0
  • Install other dependencies
pip install joblib imageio

Case study: Multi-Agent Particle Environments

We demonstrate here how the code can be used in conjunction with the(https://github.com/qian18long/epciclr2020/tree/master/mpe_local). It is based on(https://github.com/openai/multiagent-particle-envs)

Quick start

  • See train_grassland_epc.sh, train_adversarial_epc.sh and train_food_collect_epc.sh for the EPC algorithm for scenario grassland, adversarial and food_collect in the example setting presented in our paper.

Command-line options

Environment options

  • --scenario: defines which environment in the MPE is to be used (default: "grassland")

  • --map-size: The size of the environment. 1 if normal and 2 otherwise. (default: "normal")

  • --sight: The agent's visibility radius. (default: 100)

  • --alpha: Reward shared weight. (default: 0.0)

  • --max-episode-len maximum length of each episode for the environment (default: 25)

  • --num-episodes total number of training episodes (default: 200000)

  • --num-good: number of good agents in the scenario (default: 2)

  • --num-adversaries: number of adversaries in the environment (default: 2)

  • --num-food: number of food(resources) in the scenario (default: 4)

  • --good-policy: algorithm used for the 'good' (non adversary) policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

  • --adv-policy: algorithm used for the adversary policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

Core training parameters

  • --lr: learning rate (default: 1e-2)

  • --gamma: discount factor (default: 0.95)

  • --batch-size: batch size (default: 1024)

  • --num-units: number of units in the MLP (default: 64)

  • --good-num-units: number of units in the MLP of good agents, if not providing it will be num-units.

  • --adv-num-units: number of units in the MLP of adversarial agents, if not providing it will be num-units.

  • --n_cpu_per_agent: cpu usage per agent (default: 1)

  • --good-share-weights: good agents share weights of the agents encoder within the model.

  • --adv-share-weights: adversarial agents share weights of the agents encoder within the model.

  • --use-gpu: Use GPU for training (default: False)

  • --n-envs: number of environments instances in parallelization

Checkpointing

  • --save-dir: directory where intermediate training results and model will be saved (default: "/test/")

  • --save-rate: model is saved every time this number of episodes has been completed (default: 1000)

  • --load-dir: directory where training state and model are loaded from (default: "test")

Evaluation

  • --restore: restores previous training state stored in load-dir (or in save-dir if no load-dir has been provided), and continues training (default: False)

  • --display: displays to the screen the trained policy stored in load-dir (or in save-dir if no load-dir has been provided), but does not continue training (default: False)

  • --save-gif-data: Save the gif examples to the save-dir (default: False)

  • --render-gif: Render the gif in the load-dir (default: False)

EPC options

  • --initial-population: initial population size in the first stage

  • --num-selection: size of the population selected for reproduction

  • --num-stages: number of stages

  • --stage-num-episodes: number of training episodes in each stage

  • --stage-n-envs: number of environments instances in parallelization in each stage

  • --test-num-episodes: number of episodes for the competing

Example scripts

  • .maddpg_o/experiments/train_normal.py: apply the train_helpers.py for MADDPG, Att-MADDPG and mean-field training
  • .maddpg_o/experiments/train_x2.py: apply a single step doubling training

  • .maddpg_o/experiments/train_mix_match.py: mix match of the good agents in --sheep-init-load-dirs and adversarial agents in '--wolf-init-load-dirs' for model agents evaluation.

  • .maddpg_o/experiments/train_epc.py: train the scheduled EPC algorithm.

  • .maddpg_o/experiments/compete.py: evaluate different models by competition

Paper citation

@inproceedings{epciclr2020,
  author = {Qian Long and Zihan Zhou and Abhinav Gupta and Fei Fang and Yi Wu and Xiaolong Wang},
  title = {Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning},
  booktitle = {International Conference on Learning Representations},
  year = {2020}
}
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022