Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Overview

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline
Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng
International Conference on Machine Learning (ICML), 2021

If you find our work useful in your research, please consider citing:

@article{goyal2021revisiting,
  title={Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline},
  author={Goyal, Ankit and Law, Hei and Liu, Bowei and Newell, Alejandro and Deng, Jia},
  journal={International Conference on Machine Learning},
  year={2021}
}

Getting Started

First clone the repository. We would refer to the directory containing the code as SimpleView.

git clone [email protected]:princeton-vl/SimpleView.git

Requirements

The code is tested on Linux OS with Python version 3.7.5, CUDA version 10.0, CuDNN version 7.6 and GCC version 5.4. We recommend using these versions especially for installing pointnet++ custom CUDA modules.

Install Libraries

We recommend you first install Anaconda and create a virtual environment.

conda create --name simpleview python=3.7.5

Activate the virtual environment and install the libraries. Make sure you are in SimpleView.

conda activate simpleview
pip install -r requirements.txt
conda install sed  # for downloading data and pretrained models

For PointNet++, we need to install custom CUDA modules. Make sure you have access to a GPU during this step. You might need to set the appropriate TORCH_CUDA_ARCH_LIST environment variable depending on your GPU model. The following command should work for most cases export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5". However, if the install fails, check if TORCH_CUDA_ARCH_LIST is correctly set. More details could be found here.

cd pointnet2_pyt && pip install -e . && cd ..

Download Datasets and Pre-trained Models

Make sure you are in SimpleView. download.sh script can be used for downloading all the data and the pretrained models. It also places them at the correct locations. First, use the following command to provide execute permission to the download.sh script.

chmod +x download.sh

To download ModelNet40 execute the following command. This will download the ModelNet40 point cloud dataset released with pointnet++ as well as the validation splits used in our work.

./download.sh modelnet40

To download the pretrained models, execute the following command.

./download.sh pretrained

Code Organization

  • SimpleView/models: Code for various models in PyTorch.
  • SimpleView/configs: Configuration files for various models.
  • SimpleView/main.py: Training and testing any models.
  • SimpleView/configs.py: Hyperparameters for different models and dataloader.
  • SimpleView/dataloader.py: Code for different variants of the dataloader.
  • SimpleView/*_utils.py: Code for various utility functions.

Running Experiments

Training and Config files

To train or test any model, we use the main.py script. The format for running this script is as follows.

python main.py --exp-config <path to the config>

The config files are named as <protocol>_<model_name><_extra>_run_<seed>.yaml (<protocol> ∈ [dgcnn, pointnet2, rscnn]; <model_name> ∈ [dgcnn, pointnet2, rscnn, pointnet, simpleview]; <_extra> ∈ ['',valid,0.5,0.25] ). For example, the config file to run an experiment for PointNet++ in DGCNN protocol with seed 1 dgcnn_pointnet2_run_1.yaml. To run a new experiment with a different seed, you need to change the SEED parameter in the config file. For all our experiments (including on the validation set) we do 4 runs with different seeds.

As discussed in the paper for the PointNet++ and SimpleView protocols, we need to first run an experiment to tune the number of epochs on the validation set. This could be done by first running the experiment <pointnet2/dgcnn>_<model_name>_valid_run_<seed>.yaml and then running the experiment <pointnet2/dgcnn>_<model_name>_run_<seed>.yaml. Based on the number of epochs achieving the best performance on the validation set, one could use the model trained on the complete training set to get the final test performance.

To train models on the partial training set (Table 7), use the configs named as dgcnn_<model_name>_valid_<0.25/0.5>_run_<seed>.yaml and <dgcnn>_<model_name>_<0.25/0.5>_run_<seed>.yaml.

Even with the same SEED the results could vary slightly because of the randomization introduced for faster cuDNN operations. More details could be found here

SimpleView Protocol

To run an experiment in the SimpleView protocol, there are two stages.

  • First tune the number of epochs on the validation set. This is done using configs dgcnn_<model_name>_valid_run_<seed>.yaml. Find the best number of epochs on the validation set, evaluated at every 25th epoch.
  • Train the model on the complete training set using configs dgcnn_<model_name>_run_<seed>.yaml. Use the performance on the test set at the fine-tuned number of epochs as the final performance.

Evaluate a pretrained model

We provide pretrained models. They can be downloaded using the ./download pretrained command and are stored in the SimpleView/pretrained folder. To test a pretrained model, the command is of the following format.

python main.py --entry <test/rscnn_vote/pn2_vote> --model-path pretrained/<cfg_name>/<model_name>.pth --exp-config configs/<cfg_name>.yaml

We list the evaluation commands in the eval_models.sh script. For example to evaluate models on the SimpleView protocol, use the commands here. Note that for the SimpleView and the Pointnet2 protocols, the model path has names in the format model_<epoch_id>.pth. Here epoch_id represents the number of epochs tuned on the validation set.

Performance of the released pretrained models on ModelNet40

Protocol → DGCNN - Smooth DCGNN - CE. RSCNN - No Vote PointNet - No Vote SimpleView
Method↓ (Tab. 2, Col. 7) (Tab. 2, Col. 6) (Tab. 2, Col. 5) (Tab. 2, Col. 2) (Tab. 4, Col. 2)
SimpleView 93.9 93.2 92.7 90.8 93.3
PointNet++ 93.0 92.8 92.6 89.7 92.6
DGCNN 92.6 91.8 92.2 89.5 92.0
RSCNN 92.3 92.0 92.2 89.4 91.6
PointNet 90.7 90.0 89.7 88.8 90.1

Acknowlegements

We would like to thank the authors of the following reposities for sharing their code.

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation: 1, 2
  • PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space: 1, 2
  • Relation-Shape Convolutional Neural Network for Point Cloud Analysis: 1
  • Dynamic Graph CNN for Learning on Point Clouds: 1
Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022