A PyTorch Implementation of the paper - Choi, Woosung, et al. "Investigating u-nets with various intermediate blocks for spectrogram-based singing voice separation." 21th International Society for Music Information Retrieval Conference, ISMIR. 2020.

Overview

Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation

A Pytorch Implementation of the paper "Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation (ISMIR 2020)"

Installation

conda install pytorch=1.6 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge ffmpeg librosa
conda install -c anaconda jupyter
pip install musdb museval pytorch_lightning effortless_config wandb pydub nltk spacy 

Dataset

  1. Download Musdb18
  2. Unzip files
  3. We recommend you to use the wav file mode for the fast data preparation.
    musdbconvert path/to/musdb-stems-root path/to/new/musdb-wav-root

Demonstration: A Pretrained Model (TFC_TDF_Net (large))

Colab Link

Tutorial

1. activate your conda

conda activate yourcondaname

2. Training a default UNet with TFC_TDFs

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode train --gpus 4 --distributed_backend ddp --sync_batchnorm True --pin_memory True --num_workers 32 --precision 16 --run_id debug --optimizer adam --lr 0.001 --save_top_k 3 --patience 100 --min_epochs 1000 --max_epochs 2000 --n_fft 2048 --hop_length 1024 --num_frame 128  --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net  --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24  --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu  --first_conv_activation relu --last_activation identity --seed 2020

3. Evaluation

After training is done, checkpoints are saved in the following directory.

etc/modelname/run_id/*.ckpt

For evaluation,

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode eval --gpus 1 --pin_memory True --num_workers 64 --precision 32 --run_id debug --batch_size 4 --n_fft 2048 --hop_length 1024 --num_frame 128 --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu --first_conv_activation relu --last_activation identity --log wandb --ckpt vocals_epoch=891.ckpt

Below is the result.

wandb:          test_result/agg/vocals_SDR 6.954695
wandb:   test_result/agg/accompaniment_SAR 14.3738075
wandb:          test_result/agg/vocals_SIR 15.5527
wandb:   test_result/agg/accompaniment_SDR 13.561705
wandb:   test_result/agg/accompaniment_ISR 22.69328
wandb:   test_result/agg/accompaniment_SIR 18.68421
wandb:          test_result/agg/vocals_SAR 6.77698
wandb:          test_result/agg/vocals_ISR 12.45371

4. Interactive Report (wandb)

wandb report

Indermediate Blocks

Please see this document.

How to use

1. Training

1.1. Intermediate Block independent Parameters

1.1.A. General Parameters
  • --musdb_root musdb path
  • --musdb_is_wav whether the path contains wav files or not
  • --filed_mode whether you want to use filed mode or not. recommend to use it for the fast data preparation.
  • --target_name one of vocals, drum, bass, other
1.1.B. Training Environment
  • --mode train or eval
  • --gpus number of gpus
    • (WARN) gpus > 1 might be problematic when evaluating models.
  • distributed_backend use this option only when you are using multi-gpus. distributed backend, one of ddp, dp, ... we recommend you to use ddp.
  • --sync_batchnorm True only when you are using ddp
  • --pin_memory
  • --num_workers
  • --precision 16 or 32
  • --dev_mode whether you want a developement mode or not. dev mode is much faster because it uses only a small subset of the dataset.
  • --run_id (optional) directory path where you want to store logs and etc. if none then the timestamp.
  • --log True for default pytorch lightning log. wandb is also available.
  • --seed random seed for a deterministic result.
1.1.C. Training hyperparmeters
  • --batch_size trivial :)
  • --optimizer adam, rmsprop, etc
  • --lr learning rate
  • --save_top_k how many top-k epochs you want to save the training state (criterion: validation loss)
  • --patience early stop control parameter. see pytorch lightning docs.
  • --min_epochs trivial :)
  • --max_epochs trivial :)
  • --model
    • tfc_tdf_net
    • tfc_net
    • tdc_net
1.1.D. Fourier parameters
  • --n_fft
  • --hop_length
  • num_frame number of frames (time slices)
1.1.F. criterion
  • --train_loss: spec_mse, raw_l1, etc...
  • --val_loss: spec_mse, raw_l1, etc...

1.2. U-net Parameters

  • --n_blocks: number of intermediate blocks. must be an odd integer. (default=7)
  • --input_channels:
    • if you use two-channeled complex-valued spectrogram, then 4
    • if you use two-channeled manginutde spectrogram, then 2
  • --internal_channels: number of internal chennels (default=24)
  • --first_conv_activation: (default='relu')
  • --last_activation: (default='sigmoid')
  • --t_down_layers: list of layer where you want to doubles/halves the time resolution. if None, ds/us applied to every single layer. (default=None)
  • --f_down_layers: list of layer where you want to doubles/halves the frequency resolution. if None, ds/us applied to every single layer. (default=None)

1.3. SVS Framework

  • --spec_type: type of a spectrogram. ['complex', 'magnitude']

  • --spec_est_mode: spectrogram estimation method. ['mapping', 'masking']

  • CaC Framework

    • you can use cac framework [1] by setting
      • --spec_type complex --spec_est_mode mapping --last_activation identity
  • Mag-only Framework

    • if you want to use the traditional magnitude-only estimation with sigmoid, then try
      • --spec_type magnitude --spec_est_mode masking --last_activation sigmoid
    • you can also change the last activation as follows
      • --spec_type magnitude --spec_est_mode masking --last_activation relu
  • Alternatives

    • you can build an svs framework with any combination of these parameters
    • e.g. --spec_type complex --spec_est_mode masking --last_activation tanh

1.4. Block-dependent Parameters

1.4.A. TDF Net
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --bias: (default=False)
  • --tdf_activation: activation function of each block (default=relu)

1.4.B. TDC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tdc_activation: activation function of each block (default=relu)

1.4.C. TFC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_activation: activation function of each block (default=relu)

1.4.D. TFC_TDF Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_tdf_activation: activation function of each block (default=relu)
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --tfc_tdf_bias: (default=False)

1.4.E. TDC_RNN Net
  • '--n_internal_layers' : number of 1-d CNNs in a block (default=5)

  • '--kernel_size_f' : size of kernel of frequency-dimension (default=3)

  • '--bn_factor_rnn' : (default=16)

  • '--num_layers_rnn' : (default=1)

  • '--bias_rnn' : bool, (default=False)

  • '--min_bn_units_rnn' : (default=16)

  • '--bn_factor_tdf' : (default=16)

  • '--bias_tdf' : bool, (default=False)

  • '--tdc_rnn_activation' : (default='relu')

current bug - cuda error occurs when tdc_rnn net with precision 16

Reproducible Experimental Results

  • TFC_TDF_large
    • parameters
    --musdb_root ../repos/musdb18_wav
    --musdb_is_wav True
    --filed_mode True
    
    --gpus 4
    --distributed_backend ddp
    --sync_batchnorm True
    
    --num_workers 72
    --train_loss spec_mse
    --val_loss raw_l1
    --batch_size 12
    --precision 16
    --pin_memory True
    --num_worker 72         
    --save_top_k 3
    --patience 200
    --run_id debug_large
    --log wandb
    --min_epochs 2000
    --max_epochs 3000
    
    --optimizer adam
    --lr 0.001
    
    --model tfc_tdf_net
    --n_fft 4096
    --hop_length 1024
    --num_frame 128
    --spec_type complex
    --spec_est_mode mapping
    --last_activation identity
    --n_blocks 9
    --internal_channels 24
    --n_internal_layers 5
    --kernel_size_t 3 
    --kernel_size_f 3 
    --tfc_tdf_bias True
    --seed 2020
    
    
    • training
    python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --gpus 4 --distributed_backend ddp --sync_batchnorm True --num_workers 72 --train_loss spec_mse --val_loss raw_l1 --batch_size 24 --precision 16 --pin_memory True --num_worker 72 --save_top_k 3 --patience 200 --run_id debug_large --log wandb --min_epochs 2000 --max_epochs 3000 --optimizer adam --lr 0.001 --model tfc_tdf_net --n_fft 4096 --hop_length 1024 --num_frame 128 --spec_type complex --spec_est_mode mapping --last_activation identity --n_blocks 9 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --tfc_tdf_bias True --seed 2020
    • evaluation result (epoch 2007)
      • SDR 8.029
      • ISR 13.708
      • SIR 16.409
      • SAR 7.533

Interactive Report (wandb)

wandb report

You can cite this paper as follows:

@inproceedings{choi_2020, Author = {Choi, Woosung and Kim, Minseok and Chung, Jaehwa and Lee, Daewon and Jung, Soonyoung}, Booktitle = {21th International Society for Music Information Retrieval Conference}, Editor = {ISMIR}, Month = {OCTOBER}, Title = {Investigating U-Nets with various intermediate blocks for spectrogram-based singing voice separation.}, Year = {2020}}

Reference

[1] Woosung Choi, Minseok Kim, Jaehwa Chung, DaewonLee, and Soonyoung Jung, “Investigating u-nets with various intermediate blocks for spectrogram-based singingvoice separation.,” in 21th International Society for Music Information Retrieval Conference, ISMIR, Ed., OCTOBER 2020.

Owner
Woosung Choi
WooSung Choi Ph.d candidate @IELab-AT-KOREA-UNIV Seoul, Korea
Woosung Choi
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022