Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Overview

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN

Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Requirements

Create a virtual environment:

virtualenv pasta --python=3.7
source pasta/bin/activate

Install required packages:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3
pip install psutil scipy matplotlib opencv-python scikit-image==0.18.3 pycocotools
apt install libgl1-mesa-glx

Data Preparation

Since the copyright of the UPT dataset belongs to the E-commerce website Zalando and Zalora, we only release the image links in this link. For more details about the dataset and the crawling scripts, please send email to [email protected].

After downloading the raw RGB image, we run the pose estimator Openpose and human parser Graphonomy for each image to obtain the 18-points human keypoints and the 19-labels huamn parsing, respectively.

The dataset structure is recommended as:

+—UPT_256_192
|   +—UPT_subset1_256_192
|       +-image
|           +- e.g. image1.jpg
|           +- ...
|       +-keypoints
|           +- e.g. image1_keypoints.json
|           +- ...
|       +-parsing
|           +- e.g. image1.png
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +—UPT_subset2_256_192
|       +-image
|           +- ...
|       +-keypoints
|           +- ...
|       +-parsing
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +— ...

By using the raw RGB image, huamn keypoints, and human parsing, we can run the training script and the testing script.

Running Inference

We provide the pre-trained models of PASTA-GAN which are trained by using the full UPT dataset (i.e., our newly collected data, data from Deepfashion dataset, data from MPV dataset) with the resolution of 256 and 512 separately.

we provide a simple script to test the pre-trained model provided above on the UPT dataset as follow:

CUDA_VISIBLE_DEVICES=0 python3 -W ignore test.py \
    --network /datazy/Codes/PASTA-GAN/PASTA-GAN_fullbody_model/network-snapshot-004000.pkl \
    --outdir /datazy/Datasets/pasta-gan_results/unpaired_results_fulltryonds \
    --dataroot /datazy/Datasets/PASTA_UPT_256 \
    --batchsize 16

or you can run the bash script by using the following command:

bash test.sh 1

To test with higher resolution pretrained model (512x320), you can run the bash script by using the following command:

bash test.sh 2

Note that, in the testing script, the parameter --network refers to the path of the pre-trained model, the parameter --outdir refers to the path of the directory for generated results, the parameter --dataroot refers to the path of the data root. Before running the testing script, please make sure these parameters refer to the correct locations.

Running Training

Training the 256x192 PASTA-GAN full body model on the UPT dataset

  1. Download the UPT_256_192 training set.
  2. Download the VGG model from VGG_model, then put "vgg19_conv.pth" and "vgg19-dcbb9e9d" under the directory "checkpoints".
  3. Run bash train.sh 1.

Todo

  • Release the the pretrained model (256x192) and the inference script.
  • Release the training script.
  • Release the pretrained model (512x320).
  • Release the training script for model (512x320).

License

The use of this code is RESTRICTED to non-commercial research and educational purposes.

A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023