A configurable, tunable, and reproducible library for CTR prediction

Overview

FuxiCTR

This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR.

Click-through rate (CTR) prediction is an critical task for many industrial applications such as online advertising, recommender systems, and sponsored search. FuxiCTR provides an open-source library for CTR prediction, with key features in configurability, tunability, and reproducibility. It also supports the building of the BARS-CTR-Prediction benchmark, which aims for open benchmarking for CTR prediction.

👉 If you find our code or benchmarks helpful in your research, please kindly cite the following paper.

Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, Xiuqiang He. Open Benchmarking for Click-Through Rate Prediction. The 30th ACM International Conference on Information and Knowledge Management (CIKM), 2021.

Model List

Publication Model Paper Available
WWW'07 LR Predicting Clicks: Estimating the Click-Through Rate for New Ads ✔️
ICDM'10 FM Factorization Machines ✔️
CIKM'15 CCPM A Convolutional Click Prediction Model ✔️
RecSys'16 FFM Field-aware Factorization Machines for CTR Prediction ✔️
RecSys'16 YoutubeDNN Deep Neural Networks for YouTube Recommendations ✔️
DLRS'16 Wide&Deep Wide & Deep Learning for Recommender Systems ✔️
ICDM'16 IPNN Product-based Neural Networks for User Response Prediction ✔️
KDD'16 DeepCross Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features ✔️
NIPS'16 HOFM Higher-Order Factorization Machines ✔️
IJCAI'17 DeepFM DeepFM: A Factorization-Machine based Neural Network for CTR Prediction ✔️
SIGIR'17 NFM Neural Factorization Machines for Sparse Predictive Analytics ✔️
IJCAI'17 AFM Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks ✔️
ADKDD'17 DCN Deep & Cross Network for Ad Click Predictions ✔️
WWW'18 FwFM Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising ✔️
KDD'18 xDeepFM xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems ✔️
KDD'18 DIN Deep Interest Network for Click-Through Rate Prediction ✔️
CIKM'19 FiGNN FiGNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction ✔️
CIKM'19 AutoInt/AutoInt+ AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks ✔️
RecSys'19 FiBiNET FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction ✔️
WWW'19 FGCNN Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ✔️
AAAI'19 HFM/HFM+ Holographic Factorization Machines for Recommendation ✔️
NeuralNetworks'20 ONN Operation-aware Neural Networks for User Response Prediction ✔️
AAAI'20 AFN/AFN+ Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions ✔️
AAAI'20 LorentzFM Learning Feature Interactions with Lorentzian Factorization ✔️
WSDM'20 InterHAt Interpretable Click-through Rate Prediction through Hierarchical Attention ✔️
DLP-KDD'20 FLEN FLEN: Leveraging Field for Scalable CTR Prediction ✔️
CIKM'20 DeepIM Deep Interaction Machine: A Simple but Effective Model for High-order Feature Interactions ✔️
WWW'21 FmFM FM^2: Field-matrixed Factorization Machines for Recommender Systems ✔️
WWW'21 DCN-V2 DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems ✔️

Installation

Please follow the guide for installation. In particular, FuxiCTR has the following dependent requirements.

  • python 3.6
  • pytorch v1.0/v1.1
  • pyyaml >=5.1
  • scikit-learn
  • pandas
  • numpy
  • h5py
  • tqdm

Get Started

  1. Run the demo to understand the overall workflow

  2. Run a model with dataset and model config files

  3. Preprocess raw csv data to h5 data

  4. Run a model with h5 data as input

  5. How to make configurations?

  6. Tune the model hyper-parameters via grid search

  7. Run a model with sequence features

  8. Run a model with pretrained embeddings

Code Structure

Check an overview of code structure for more details on API design.

Open Benchmarking

If you are looking for the benchmarking settings and results on the state-of-the-art CTR prediction models, please refer to the BARS-CTR-Prediction benchmark. By clicking on the "SOTA Results", you will find the benchmarking results along with the corresponding reproducing steps.

Discussion

Welcome to join our WeChat group for any questions and discussions.

Join Us

We have open positions for internships and full-time jobs. If you are interested in research and practice in recommender systems, please send your CV to [email protected].

Owner
XUEPAI
XUEPAI
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022