TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Related tags

Deep LearningTGRNet
Overview

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition." arXiv preprint arXiv:2106.10598 (2021).

This work has been accepted for presentation at ICCV2021. The preview version has released at arXiv.org (https://arxiv.org/abs/2106.10598).

Abstract

A table arranging data in rows and columns is a very effective data structure, which has been widely used in business and scientific research. Considering large-scale tabular data in online and offline documents, automatic table recognition has attracted increasing attention from the document analysis community. Though human can easily understand the structure of tables, it remains a challenge for machines to understand that, especially due to a variety of different table layouts and styles. Existing methods usually model a table as either the markup sequence or the adjacency matrix between different table cells, failing to address the importance of the logical location of table cells, e.g., a cell is located in the first row and the second column of the table. In this paper, we reformulate the problem of table structure recognition as the table graph reconstruction, and propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition. Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells. Experimental results on three popular table recognition datasets and a new dataset with table graph annotations (TableGraph-350K) demonstrate the effectiveness of the proposed TGRNet for table structure recognition.

Getting Started

Requirements

Create the environment from the environment.yml file conda env create --file environment.yml or install the software needed in your environment independently. If you meet some problems when installing PyTorch Geometric, please follow the official installation indroduction (https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html).

dependencies:
  - python==3.7.0
  - pip==20.2.4
  - pip:
    - dominate==2.5.1
    - imageio==2.8.0
    - networkx==2.3
    - numpy==1.18.2
    - opencv-python==4.4.0.46
    - pandas==1.0.3
    - pillow==7.1.1
    - torchfile==0.1.0
    - tqdm==4.45.0
    - visdom==0.1.8.9
    - Polygon3==3.0.8

PyTorch Installation

# CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
# CUDA 10.1
pip install torch==1.5.0+CU101 torchvision==0.6.0+CU101 -f https://download.pytorch.org/whl/torch_stable.html
# CUDA 9.2
pip install torch==1.5.0+CU92 torchvision==0.6.0+CU92 -f https://download.pytorch.org/whl/torch_stable.html

PyTorch Geometric Installation

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-sparse==0.6.3 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-cluster==1.5.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-geometric

where ${CUDA} should be replaced by your specific CUDA version (cu92, cu101, cu102).

Datasets Preparation

cd ./datasets
tar -zxvf datasets.tar.gz
## The './datasets/' folder should look like:
- datasets/
  - cmdd/
  - icdar13table/
  - icdar19_ctdar/
  - tablegraph24k/

Pretrained Models Preparation

IMPORTANT Acoording to feedbacks from users (I also tested by myself), the pretrained models may not work for some enviroments. I have tested the following enviroment that can work as expected.

  - CUDA 9.2
  - torch 1.7.0+torchvision 0.8.0
  - torch-cluster 1.5.9
  - torch-geometric 1.6.3
  - torch-scatter 2.0.6
  - torch-sparse 0.6.9
  - torch-spline-conv 1.2.1
  • Download pretrained models from Google Dive or Alibaba Cloud.
  • Put checkpoints.tar.gz in "./checkpoints/" and extract it.
cd ./checkpoints
tar -zxvf checkpoints.tar.gz
## The './checkpoints/' folder should look like:
- checkpoints/
  - cmdd_overall/
  - icdar13table_overall/
  - icdar19_lloc/
  - tablegraph24k_overall/

Test

We have prepared scripts for test and you can just run them.

- test_cmdd.sh
- test_icdar13table.sh
- test_tablegraph-24k.sh
- test_icdar19ctdar.sh

Train

Todo

Owner
Wenyuan
Beijing Jiaotong University
Wenyuan
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022