TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Related tags

Deep LearningTGRNet
Overview

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition." arXiv preprint arXiv:2106.10598 (2021).

This work has been accepted for presentation at ICCV2021. The preview version has released at arXiv.org (https://arxiv.org/abs/2106.10598).

Abstract

A table arranging data in rows and columns is a very effective data structure, which has been widely used in business and scientific research. Considering large-scale tabular data in online and offline documents, automatic table recognition has attracted increasing attention from the document analysis community. Though human can easily understand the structure of tables, it remains a challenge for machines to understand that, especially due to a variety of different table layouts and styles. Existing methods usually model a table as either the markup sequence or the adjacency matrix between different table cells, failing to address the importance of the logical location of table cells, e.g., a cell is located in the first row and the second column of the table. In this paper, we reformulate the problem of table structure recognition as the table graph reconstruction, and propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition. Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells. Experimental results on three popular table recognition datasets and a new dataset with table graph annotations (TableGraph-350K) demonstrate the effectiveness of the proposed TGRNet for table structure recognition.

Getting Started

Requirements

Create the environment from the environment.yml file conda env create --file environment.yml or install the software needed in your environment independently. If you meet some problems when installing PyTorch Geometric, please follow the official installation indroduction (https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html).

dependencies:
  - python==3.7.0
  - pip==20.2.4
  - pip:
    - dominate==2.5.1
    - imageio==2.8.0
    - networkx==2.3
    - numpy==1.18.2
    - opencv-python==4.4.0.46
    - pandas==1.0.3
    - pillow==7.1.1
    - torchfile==0.1.0
    - tqdm==4.45.0
    - visdom==0.1.8.9
    - Polygon3==3.0.8

PyTorch Installation

# CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
# CUDA 10.1
pip install torch==1.5.0+CU101 torchvision==0.6.0+CU101 -f https://download.pytorch.org/whl/torch_stable.html
# CUDA 9.2
pip install torch==1.5.0+CU92 torchvision==0.6.0+CU92 -f https://download.pytorch.org/whl/torch_stable.html

PyTorch Geometric Installation

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-sparse==0.6.3 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-cluster==1.5.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-geometric

where ${CUDA} should be replaced by your specific CUDA version (cu92, cu101, cu102).

Datasets Preparation

cd ./datasets
tar -zxvf datasets.tar.gz
## The './datasets/' folder should look like:
- datasets/
  - cmdd/
  - icdar13table/
  - icdar19_ctdar/
  - tablegraph24k/

Pretrained Models Preparation

IMPORTANT Acoording to feedbacks from users (I also tested by myself), the pretrained models may not work for some enviroments. I have tested the following enviroment that can work as expected.

  - CUDA 9.2
  - torch 1.7.0+torchvision 0.8.0
  - torch-cluster 1.5.9
  - torch-geometric 1.6.3
  - torch-scatter 2.0.6
  - torch-sparse 0.6.9
  - torch-spline-conv 1.2.1
  • Download pretrained models from Google Dive or Alibaba Cloud.
  • Put checkpoints.tar.gz in "./checkpoints/" and extract it.
cd ./checkpoints
tar -zxvf checkpoints.tar.gz
## The './checkpoints/' folder should look like:
- checkpoints/
  - cmdd_overall/
  - icdar13table_overall/
  - icdar19_lloc/
  - tablegraph24k_overall/

Test

We have prepared scripts for test and you can just run them.

- test_cmdd.sh
- test_icdar13table.sh
- test_tablegraph-24k.sh
- test_icdar19ctdar.sh

Train

Todo

Owner
Wenyuan
Beijing Jiaotong University
Wenyuan
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Xi Dongbo 78 Nov 29, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022