Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Overview

codecov

Movement Primitives

Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This repository focuses mainly on imitation learning, generalization, and adaptation of movement primitives. It provides implementations in Python and Cython.

Features

  • Dynamical Movement Primitives (DMPs) for
    • positions (with fast Runge-Kutta integration)
    • Cartesian position and orientation (with fast Cython implementation)
    • Dual Cartesian position and orientation (with fast Cython implementation)
  • Coupling terms for synchronization of position and/or orientation of dual Cartesian DMPs
  • Propagation of DMP weight distribution to state space distribution
  • Probabilistic Movement Primitives (ProMPs)

API Documentation

The API documentation is available here.

Install Library

This library requires Python 3.6 or later and pip is recommended for the installation. In the following instructions, we assume that the command python refers to Python 3. If you use the system's Python version, you might have to add the flag --user to any installation command.

I recommend to install the library via pip in editable mode:

python -m pip install -e .[all]

If you don't want to have all dependencies installed, just omit [all]. Alternatively, you can install dependencies with

python -m pip install -r requirements.txt

You could also just build the Cython extension with

python setup.py build_ext --inplace

or install the library with

python setup.py install

Non-public Extensions

Note that scripts from the subfolder examples/external_dependencies/ require access to git repositories (URDF files or optional dependencies) that are not publicly available.

MoCap Library

# untested: pip install git+https://git.hb.dfki.de/dfki-interaction/mocap.git
git clone [email protected]:dfki-interaction/mocap.git
cd mocap
python -m pip install -e .
cd ..

Get URDFs

# RH5
git clone [email protected]:models-robots/rh5_models/pybullet-only-arms-urdf.git --recursive
# RH5v2
git clone [email protected]:models-robots/rh5v2_models/pybullet-urdf.git --recursive
# Kuka
git clone [email protected]:models-robots/kuka_lbr.git
# Solar panel
git clone [email protected]:models-objects/solar_panels.git
# RH5 Gripper
git clone [email protected]:motto/abstract-urdf-gripper.git --recursive

Data

I assume that your data is located in the folder data/ in most scripts. You should put a symlink there to point to your actual data folder.

Build API Documentation

You can build an API documentation with pdoc3. You can install pdoc3 with

pip install pdoc3

... and build the documentation from the main folder with

pdoc movement_primitives --html

It will be located at html/movement_primitives/index.html.

Test

To run the tests some python libraries are required:

python -m pip install -e .[test]

The tests are located in the folder test/ and can be executed with: python -m nose test

This command searches for all files with test and executes the functions with test_*.

Contributing

To add new features, documentation, or fix bugs you can open a pull request. Directly pushing to the main branch is not allowed.

Examples

Conditional ProMPs

Probabilistic Movement Primitives (ProMPs) define distributions over trajectories that can be conditioned on viapoints. In this example, we plot the resulting posterior distribution after conditioning on varying start positions.

Script

Potential Field of 2D DMP

A Dynamical Movement Primitive defines a potential field that superimposes several components: transformation system (goal-directed movement), forcing term (learned shape), and coupling terms (e.g., obstacle avoidance).

Script

DMP with Final Velocity

Not all DMPs allow a final velocity > 0. In this case we analyze the effect of changing final velocities in an appropriate variation of the DMP formulation that allows to set the final velocity.

Script

ProMPs

The LASA Handwriting dataset learned with ProMPs. The dataset consists of 2D handwriting motions. The first and third column of the plot represent demonstrations and the second and fourth column show the imitated ProMPs with 1-sigma interval.

Script

Contextual ProMPs

We use a dataset of Mronga and Kirchner (2021) with 10 demonstrations per 3 different panel widths that were obtained through kinesthetic teaching. The panel width is considered to be the context over which we generalize with contextual ProMPs. Each color in the above visualizations corresponds to a ProMP for a different context.

Script

Dependencies that are not publicly available:

Dual Cartesian DMP

We offer specific dual Cartesian DMPs to control dual-arm robotic systems like humanoid robots.

Scripts: Open3D, PyBullet

Dependencies that are not publicly available:

Coupled Dual Cartesian DMP

We can introduce a coupling term in a dual Cartesian DMP to constrain the relative position, orientation, or pose of two end-effectors of a dual-arm robot.

Scripts: Open3D, PyBullet

Dependencies that are not publicly available:

Propagation of DMP Distribution to State Space

If we have a distribution over DMP parameters, we can propagate them to state space through an unscented transform.

Script

Dependencies that are not publicly available:

Funding

This library has been developed initially at the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI GmbH) in Bremen. At this phase the work was supported through a grant of the German Federal Ministry of Economic Affairs and Energy (BMWi, FKZ 50 RA 1701).

You might also like...
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Implementation of CVPR 2021 paper
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

Toward Spatially Unbiased Generative Models (ICCV 2021)
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Comments
  • Modify the initial method of T in dmp_open_loop_quaternion() to avoid numerical rounding errors

    Modify the initial method of T in dmp_open_loop_quaternion() to avoid numerical rounding errors

    the origin initial method about T in dmp_open_loop_quaternion() is:T = [start_t]; while t <run_t: last_t=t, t+=dt,T.append(t), which will cause the numerical rounding errors when run_t = 2.99. In detail: when t = 2.07, t+= dt t should be 2.08, but is the real scene, it will become 2.0799999999. And it will cause the length of Yr becomes 301. In the End, I am greenhand about Github, I am sorry if I do something wrong operation about repo.

    opened by CodingCatMountain 5
  • A Problem about CartesianDMP due to the parameter 'dt'...

    A Problem about CartesianDMP due to the parameter 'dt'...

    Hi, this package is very very very good, it do really help me to learn about the Learn from Demonstrations. But last night, I find a problem about open_loop, which is function included in the CartesianDMP class. The problem is the length about the python list, which named Yr in this function. And I have checked the source code, I found : My Y, which is passed to cartesian_dmp.imitate(T,Y), it's length is 600; And Yp in CartesianDMP.open_loop(), which returned by dmp_open_loop, it's length is 600, which are correct, but the length Yr in CartesianDMP.open_loop() is 601. I believe the relationship about T and dt in dmp_open_loop() and dmp_open_loop_quaternion() has some problem. Please Check! The T in dmp_open_loop() is initialized via this way : T=np.arange(start_t, run_t + dt, dt) , and the T in dmp_open_loop_quaternion() is initialized via this way: T=[start_t], which start_t is 0.0, and in a loop , last_t = t, t+=dt, T.append(t).

    opened by CodingCatMountain 4
  • CartesianDMP object has no attribute forcing_term

    CartesianDMP object has no attribute forcing_term

    I would like to save the weights of a trained CartesianDMP. There is no overloaded function get_weights() so I guess the one from the DMP base class should work. However, when calling it it raises the error in the title:

    AttributeError: 'CartesianDMP' object has no attribute 'forcing_term'
    

    Do you know what could be the issue here? Thanks in advance.

    opened by buschbapti 3
  • Can this repo for the periodic motion and orientation?

    Can this repo for the periodic motion and orientation?

    Thanks for sharing. Though DMPs are widely used to encode point-to-point movements, implementing the periodic DMP for translation and orientation is still challenging. Can this repository achieve these? If possible, would you provide any examples?

    opened by HongminWu 1
Releases(0.5.0)
Owner
DFKI Robotics Innovation Center
Research group at the German Research Center for Artificial Intelligence. For a list of our other open source contributuions click the link below:
DFKI Robotics Innovation Center
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022