[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

Related tags

Deep Learningpytorch
Overview

InvCompress

Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral)

Figure: Our framework

Acknowledgement

The framework is based on CompressAI, we add our model in compressai.models.ours, compressai.models.our_utils. We modify compressai.utils, compressai.zoo, compressai.layers and examples/train.py for usage. Part of the codes benefit from Invertible-Image-Rescaling.

Introduction

In this paper, we target at structuring a better transformation between the image space and the latent feature space. Instead of employing previous autoencoder style networks to build this transformation, we propose an enhanced Invertible Encoding Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression. To solve the challenge of unstable training with INN, we propose an attentive channel squeeze layer to flexibly adjust the feature dimension for a lower bit rate. We also present a feature enhancement module with same-resolution transforms and residual connections to improve the network nonlinear representation capacity.

[Paper]

Figure: Our results

Installation

As mentioned in CompressAI, "A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list)."

git clone https://github.com/xyq7/InvCompress.git
cd InvCompress/codes/
conda create -n invcomp python=3.7 
conda activate invcomp
pip install -U pip && pip install -e .
conda install -c conda-forge tensorboard

Usage

Evaluation

If you want evaluate with pretrained model, please download from Google drive or Baidu cloud (code: a7jd) and put in ./experiments/

Some evaluation dataset can be downloaded from kodak dataset, CLIC

Note that as mentioned in original CompressAI, "Inference on GPU is not recommended for the autoregressive models (the entropy coder is run sequentially on CPU)." So for inference of our model, please run on CPU.

python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

An example: to evaluate model of quality 1 optimized with mse on kodak dataset.

python -m compressai.utils.eval_model checkpoint ../data/kodak -a invcompress -exp exp_01_mse_q1 -s ../results/exp_01

If you want to evaluate your trained model on own data, please run update before evaluation. An example:

python -m compressai.utils.update_model -exp $exp_name -a invcompress
python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

Train

We use the training dataset processed in the repo. We further preprocess with /codes/scripts/flicker_process.py Training setting is detailed in the paper. You can also use your own data for training.

python examples/train.py -exp $exp_name -m invcompress -d $train_data_dir --epochs $epoch_num -lr $lr --batch-size $batch_size --cuda --gpu_id $gpu_id --lambda $lamvda --metrics $metric --save 

An example: to train model of quality 1 optimized with mse metric.

python examples/train.py -exp exp_01_mse_q1 -m invcompress -d ../data/flicker --epochs 600 -lr 1e-4 --batch-size 8 --cuda --gpu_id 0 --lambda 0.0016 --metrics mse --save 

Other usage please refer to the original library CompressAI

Citation

If you find this work useful for your research, please cite:

@inproceedings{xie2021enhanced,
    title = {Enhanced Invertible Encoding for Learned Image Compression}, 
    author = {Yueqi Xie and Ka Leong Cheng and Qifeng Chen},
    booktitle = {Proceedings of the ACM International Conference on Multimedia},
    year = {2021}
}

Contact

Feel free to contact us if there is any question. (YueqiXIE, [email protected]; Ka Leong Cheng, [email protected])

[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023