CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

Overview

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

This document describes how to install and use CRISCE (CRItical SCEnario), the tool developed by Jasim Ahmed and others for automatically generate simulations of car crashed from accident sketches using BeamNG.tech.

Repo Organization

.
├── Datasets
│   ├── CIREN
│   └── SYNTH
├── LICENSE
├── PythonRobotics
├── README.md
├── beamngpy-1.18-py2.py3-none-any.whl
├── crisce
└── requirements.txt

The crisce folder contains the source code of the tool. The Datasets folder contains the sample accident sketches compatible with the tool: CIREN contains sketches from NHTSA; SYNT contains synthetic sketches that we manually created from pre-existing car crash simulations in BeamNG.tech.

beamngpy-1.18-py2.py3-none-any.whl is the wheel file necessary to manually install beamngpy the Python API to BeamNG.tech. Tl;DR: The package available on pypi is broken.

requirements.txt lists the python packages needed to install the tool. They are in the usual format accepted by pip.

Dependencies

CRISCE is a tool written in Python, therefore it requires a working Python installation. Specifically, we tested CRISCE with Python 3.7.10

CRISCE uses the BeamNG.tech simulator to run the driving simulations. Therefore, BeamNG.tech must be installed as well.

Note: the version of the simulator used by CRISCE is BeamNG.research v1.7.0.1

BeamNG.tech is free for research use and can be requested to BeamNG.GmbH by submitting the form at the following link: https://register.beamng.tech/

NOTE: BeamNG.tech currently supports only Windows, hence CRISCE cannot be used on other platforms (e.g., Linux/Mac) unless you can resort to full system virtualization. For example, we tested CRISCE using the commercial tool Parallels Desktop running on a Mac Book Pro. Performance will not be the same but at least it gets the job done.

Installation

Installing BeamNG.tech

After successfully registered to https://register.beamng.tech/, you should receive an email with the instructions to access the software and a registration key (i.e., tech.key).

Please download the BeamNG.research v1.7.0.1 and unzip it somewhere in your system.

ATTENTION: BeamNG cannot handle paths with spaces and special characters, so please install it in a location that matches these requirements. We suggest something simple, like C:\BeamNG.research_v1.7.0.1.

We refer to this folder as

Store a copy of the tech.key file in a folder somewhere in your system and rename this copy to research.key. BeamNG use this folder to cache the content and the simulation data.

ATTENTION: BeamNG cannot handle paths with spaces and special characters, so please store the registration file in a location that matches these requirements. We suggest something simple, like C:\BeamNG_user.

We refer to this folder as

Installing CRISCE and its Dependencies

We exemplify the installation and usage of CRISCE using Windows Powershell; you can use other systems (e.g., PyCharm) but in that case you need to adapt the commands below.

Before starting, check that you have installed the right version of Python:

python.exe -V
    Python 3.7.10

To install CRISCE we suggest creating a virtual environment using venv. You can also use conda or similar, but in this case you need to adapt the command below to fit your case.

Move to CRISCE's root folder (i.e., where this file is) and create a new virtual environment:

python.exe -m venv .venv

Activate the virtual environment and upgrade pip, setup tools and wheel.

.venv\Scripts\activate
py.exe -m pip install --upgrade pip
pip install setuptools wheel --upgrade

Install the python dependencies listed in the requirements.txt:

pip install -r requirements.txt

At this point, we need to install beamingly from the provided wheel file:

pip install beamngpy-1.18-py2.py3-none-any.whl

Finally, we need to make sure the code of PythonRobotics is there:

git submodule init
git submodule update

At this point, you should be ready to go.

Confirm that CRISCE is installed using the following command from the root folder of this repo:

py.exe crisce/app.py --help

This command must produce an output similar to:

Usage: app.py [OPTIONS] COMMAND [ARGS]...

Options:
  --log-to PATH  Location of the log file. If not specified logs appear on the
                 console
  --debug        Activate debugging (results in more logging)  [default:
                 (Disabled)]
  --help         Show this message and exit.

Commands:
  generate

Running CRISCE

The current release of CRISCE allows to generate a BeamNG simulation of a car crash from a single sketch using the command generate. This command accepts several parameters that you can list by invoking:

py.exe crisce/app.py generate --help

Usage: app.py generate [OPTIONS]

Options:
  --accident-sketch PATH        Input accident sketch for generating the
                                simulation  [required]
  --dataset-name [CIREN|SYNTH]  Name of the dataset the accident comes from.
                                [required]
  --output-to PATH              Folder to store outputs. It will created if
                                not present. If omitted we use the accident
                                folder.
  --beamng-home PATH            Home folder of the BeamNG.research simulator
                                [required]
  --beamng-user PATH            User folder of the BeamNG.research simulator
                                [required]
  --help                        Show this message and exit.

The following commands show how you can generate a simulation of a real car crash (i.e., from a sketch in the CIREN dataset) and from a simulated crash (i.e., from a sketch in the SYNTH dataset). The difference between the two dataset is that for sketches of real car crashes, we have information about the expected impact; while, for synthetic sketches the information is missing.

For example, to create a simulation form the following sketch (i.e., CIREN-99817): CIREN-99817

CIREN-99817

you can run the following command (after replacing and with the appropriate values:

py.exe crisce/app.py generate generate --accident-sketch .\Datasets\CIREN\99817\ --dataset-name CIREN --beamng-home `
   
    ` --beamng-user 
    

    
   

To create a simulation form the following synthetic sketch (i.e., fourway_1): CIREN-99817

you can run the following command:

py.exe crisce/app.py generate generate --accident-sketch ./Datasets/SYNTH/fourway_1 --dataset-name SYNTH --beamng-home `
   
    ` --beamng-user 
    

    
   

Reporting

The generate command produces a number of intermediate outputs that show the progress of the computation and measure the accuracy of the simulation that is printed on the console:

Quality_of_environment = 33.0, quality_of_crash = 17.0, quality_of_trajecory = 19.009199327937655
Crash Simulation Accuracy =  69.00919932793765 %

The intermediate results instead are stored under the sketch folder (under output) or the folder configured via the --output-to parameter.

For the case CIREN-99817 for example, those are the intermediate results produced by CRISCE:

output/
├── car
│   ├── 0_mask_result_b.jpg
│   ├── 0_mask_result_r.jpg
│   ├── 1_blend_masks_r_b.jpg
│   ├── 1_blend_masks_res.jpg
│   ├── 2_opening_morph.jpg
│   ├── 3_AABB_OBB.jpg
│   ├── 4_crash_point_visualization.jpg
│   ├── 5_triangle_extraction.jpg
│   ├── 6_angles_for_vehicles.jpg
│   ├── 7_sequence_of_movements.jpg
│   ├── 8_twelve_point_model_sides.jpg
│   └── 9_crash_point_on_vehicles.jpg
├── kinematics
│   ├── 0_distorted_control_points.jpg
│   ├── 1_distorted_control_points.jpg
│   ├── 2_distorted_trajectory.jpg
│   ├── 2_original_trajectory.jpg
│   ├── 3_distorted_trajectory.jpg
│   └── 3_original_trajectory.jpg
├── road
│   ├── 0_gray_image.jpg
│   ├── 1_blur_image.jpg
│   ├── 2_threshold_image.jpg
│   ├── 3_dilate_image.jpg
│   ├── 4_erode_image.jpg
│   ├── 5_Contour_Viz_image.jpg
│   ├── 6_midpoints_of_lane.jpg
│   ├── 7_distortion_mapping.jpg
│   └── 8_final_result.jpg
├── simulation
│   ├── 0_sim_plot_road.jpg
│   ├── 1_sim_initial_pos_dir.jpg
│   ├── 2_sim_bbox_traj.jpg
│   ├── 3_crisce_beamng_efficiency.jpg
│   ├── 3_crisce_efficiency.jpg
│   └── 4_trace_veh_BBOX.jpg
└── summary.json
Owner
Chair of Software Engineering II, Uni Passau
Chair of Software Engineering II, Uni Passau
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022