Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Overview

Introduction

Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants.

This codebase contains two packages:

  1. anhp: Attentive-Neural Hawkes Process (A-NHP)
  2. andtt: Attentive-Neural Datalog Through Time (A-NDTT).

Author: Chenghao Yang ([email protected])

Reference

If you use this code as part of any published research, please acknowledge the following paper (it encourages researchers who publish their code!):

@article{yang-2021-transformer,
  author =      {Chenghao Yang and Hongyuan Mei and Jason Eisner},
  title =       {Transformer Embeddings of Irregularly Spaced Events and Their Participants},
  journal =     {arXiv preprint arxiv:2201.00044},
  year =        {2021}
}

Instructions

Here are the instructions to use the code base.

Dependencies and Installation

This code is written in Python 3, and I recommend you to install:

  • Anaconda that provides almost all the Python-related dependencies;

This project relies on Datalog Utilities in NDTT project, please first install it. (please remove the torch version (1.1.0) in setup.py of NDTT project, because that is not the requirement of this project and we only use non-pytorch part of NDTT. We recommend using torch>=1.7 for this project.).

Then run the command line below to install the package (add -e option if you need an editable installation):

pip install .

Dataset Preparation

Download datasets and programs from here.

Organize your domain datasets as follows:

domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA

(A-NDTT-only) Build Dynamic Databases

Go to the andtt/run directory.

To build the dynamic databases for your data, try the command line below for detailed guide:

python build.py --help

The generated dynamic model architectures (represented by database facts) are stored in this directory:

domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/tdbcache

Train Models

To train the model specified by your Datalog probram, try the command line below for detailed guide:

python train.py --help

The training log and model parameters are stored in this directory:

# A-NHP
domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/ContKVLogs
# A-NDTT
domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/Logs

Example command line for training:

# A-NHP
python train.py -d YOUR_DOMAIN -ps ../../ -bs BATCH_SIZE -me 50 -lr 1e-4 -d_model 32 -teDim 10 -sd 1111 -layer 1
# A-NDTT
python train.py -d YOUR_DOMAIN -db YOUR_PROGRAM -ps ../../ -bs BATCH_SIZE -me 50 -lr 1e-4 -d_model 32 -teDim 10 -sd 1111 -layer 1

Test Models

To test the trained model, use the command line below for detailed guide:

python test.py --help

Example command line for testing:

python test.py -d YOUR_DOMAIN -fn FOLDER_NAME -s test -sd 12345 -pred

To evaluate the model predictions, use the command line below for detailed guide:

python eval.py --help

Example command line for testing:

python eval.py -d YOUR_DOMAIN -fn FOLDER_NAME -s test

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

  1. The transformer component implementation used in this repo is based on widely-recognized Annotated Transformer.
  2. The code structure is inspired by Prof. Hongyuan Mei's Neural Datalog Through Time
Owner
Alan Yang
AWS Applied Scientist Intern. [email protected] CLSP; M.S. & RA @columbia; Ex-intern @IBM Watson; B.S.
Alan Yang
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022