Few-Shot Object Detection via Association and DIscrimination

Related tags

Deep LearningFADI
Overview

Few-Shot Object Detection via Association and DIscrimination

Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIscrimination.

FSCE Figure

Bibtex

@inproceedings{cao2021few,
  title={Few-Shot Object Detection via Association and DIscrimination},
  author={Cao, Yuhang and Wang, Jiaqi and Jin, Ying and Wu, Tong and Chen, Kai and Liu, Ziwei and Lin, Dahua},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Arxiv: https://arxiv.org/abs/2111.11656

Install dependencies

  • Create a new environment: conda create -n fadi python=3.8 -y
  • Active the newly created environment: conda activate fadi
  • Install PyTorch and torchvision: conda install pytorch=1.7 torchvision cudatoolkit=10.2 -c pytorch -y
  • Install MMDetection: pip install mmdet==2.11.0
  • Install MMCV: pip install mmcv==1.2.5
  • Install MMCV-Full: pip install mmcv-full==1.2.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html

Note:

  • Only tested on MMDet==2.11.0, MMCV==1.2.5, it may not be consistent with other versions.
  • The above instructions use CUDA 10.2, make sure you install the correct PyTorch, Torchvision and MMCV-Full that are consistent with your CUDA version.

Prepare dataset

We follow exact the same split with TFA, please download the dataset and split files as follows:

Create a directory data in the root directory, and the expected structure for data directory:

data/
    VOCdevkit
    few_shot_voc_split

Training & Testing

Base Training

FADI share the same base training stage with TFA, we directly convert the corresponding checkpoints from TFA in Detectron2 format to MMDetection format, please download the base training checkpoints following the table.

Name Split
AP50
download
Base Model 1 80.8 model  | surgery
Base Model 2 81.9 model  | surgery
Base Model 3 82.0 model  | surgery

Create a directory models in the root directory, and the expected structure for models directory:

models/
    voc_split1_base.pth
    voc_split1_base_surgery.pth
    voc_split2_base.pth
    voc_split2_base_surgery.pth
    voc_split3_base.pth
    voc_split3_base_surgery.pth

Few-Shot Fine-tuning

FADI divides the few-shot fine-tuning stage into two steps, ie, association and discrimination,

Suppose we want to train a model for Pascal VOC split1, shot1 with 8 GPUs

1. Step 1: Association.

Getting the assigning scheme of the split:

python tools/associate.py 1

Aligning the feature distribution of the associated base and novel classes:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_association.py 8

2. Step 2: Discrimination

Building a discriminate feature space for novel classes with disentangling and set-specialized margin loss:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_discrimination.py 8

Holistically Training:

We also provide you a script tools/fadi_finetune.sh to holistically train a model for a specific split/shot by running:

./tools/fadi_finetune.sh 1 1

Evaluation

To evaluate the trained models, run

./tools/dist_test.sh configs/voc_split1/fadi_split1_shot1_discrimination.py [checkpoint] 8 --eval mAP --out res.pkl

Model Zoo

Pascal VOC split 1

Shot
nAP50
download
1 50.6 association  | discrimination
2 54.8 association  | discrimination
3 54.1 association  | discrimination
5 59.4 association  | discrimination
10 63.5 association  | discrimination

Pascal VOC split 2

Shot
nAP50
download
1 30.5 association  | discrimination
2 35.1 association  | discrimination
3 40.3 association  | discrimination
5 42.9 association  | discrimination
10 48.3 association  | discrimination

Pascal VOC split 3

Shot
nAP50
download
1 45.7 association  | discrimination
2 49.4 association  | discrimination
3 49.4 association  | discrimination
5 55.1 association  | discrimination
10 59.3 association  | discrimination
Owner
Cao Yuhang
Cao Yuhang
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022