CONetV2: Efficient Auto-Channel Size Optimization for CNNs

Related tags

Deep LearningCONetV2
Overview

CONetV2: Efficient Auto-Channel Size Optimization for CNNs

Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted to the International Conference on Machine Learning and Applications (ICMLA) 2021 for Oral Presentation!

CONetV2: Efficient Auto-Channel Size Optimization for CNNs,
Yi Ru Wang, Samir Khaki, Weihang Zheng, Mahdi S. Hosseini, Konstantinos N. Plataniotis
In Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA)

Checkout our arXiv preprint: Paper

Overview

Neural Architecture Search (NAS) has been pivotal in finding optimal network configurations for Convolution Neural Networks (CNNs). While many methods explore NAS from a global search space perspective, the employed optimization schemes typically require heavy computation resources. Instead, our work excels in computationally constrained environments by examining the micro-search space of channel size, the optimization of which is effective in outperforming baselines. In tackling channel size optimization, we design an automated algorithm to extract the dependencies within channel sizes of different connected layers. In addition, we introduce the idea of Knowledge Distillation, which enables preservation of trained weights, admist trials where the channel sizes are changing. As well, because standard performance indicators (accuracy, loss) fails to capture the performance of individual network components, we introduce a novel metric that has high correlation with test accuracy and enables analysis of individual network layers. Combining Dependency Extraction, metrics, and knowledge distillation, we introduce an efficient search algorithm, with simulated annealing inspired stochasticity, and demonstrate its effectiveness in outperforming baselines by a large margin, while only utilizing a fraction of the trainable parameters.

Results

We report our results below for ResNet34. On the left we provide a comparison of our method compared to the baseline, compared to Compound Scaling and Random Optimization. On the right we compare the two variations of our method: Simulated Annealing (Left), Greedy (Right). For further experiments and results, please refer to our paper.

Accuracy vs. Parameters Channel Evolution Comparison

Table of Contents

Getting Started

Dependencies

  • Requirements are specified in requirements.txt
certifi==2020.6.20
cycler==0.10.0
et-xmlfile==1.0.1
future==0.18.2
graphviz==0.14.2
jdcal==1.4.1
kiwisolver==1.2.0
matplotlib==3.3.2
memory-profiler==0.57.0
numpy==1.19.2
openpyxl==3.0.5
pandas==1.1.3
Pillow==8.0.0
pip==18.1
pkg-resources==0.0.0
psutil==5.7.2
ptflops==0.6.2
pyparsing==2.4.7
python-dateutil==2.8.1
pytz ==2020.1
PyYAML==5.3.1
scipy==1.5.2
setuptools==40.8.0
six==1.15.0
torch==1.6.0
torchvision==0.7.0
torchviz==0.0.1
wheel==0.35.1
xlrd==1.2.0

Executing program

To run the main searching script for searching on ResNet34:

cd CONetV2
python main.py --config='./configs/config_resnet.yaml' --gamma=0.8 --optimization_algorithm='SA' --post_fix=1

We also provide a script for training using slurm in slurm_scripts/run.sh. Update parameters on Line 6, 9, and 10 to use.

sbatch slurm_scripts/run.sh

Options for Training

--config CONFIG             # Set root path of project that parents all others:
                            Default = './configs/config.yaml'
--data DATA_PATH            # Set data directory path: 
                            Default = '.adas-data'
--output OUTPUT_PATH        # Set the directory for output files,  
                            Default = 'adas_search'
--root ROOT                 # Set root path of project that parents all others: 
                            Default = '.'
--model MODEL_TYPE          # Set the model type for searching {'resnet34', 'darts'}
                            Default = None
--gamma                     # Momentum tuning factor
                            Default = None
--optimization_algorithm    # Type of channel search algorithm {'greedy', 'SA'}
                            Default = None

Training Output

All training output will be saved to the OUTPUT_PATH location. After a full experiment, results will be recorded in the following format:

  • OUTPUT_PATH/EXPERIMENT_FOLDER
    • full_train
      • performance.xlsx: results for the full train, including GMac, Parameters(M), and accuracies & losses (Train & Test) per epoch.
    • Trials
      • adapted_architectures.xlsx: channel size evolution per convolution layer throughout searching trials.
      • trial_{n}.xlsx: Details of the particular trial, including metric values for every epoch within the trial.
    • ckpt.pth: Checkpoint of the model which achieved the highest test accuracy during full train.

Code Organization

Configs

We provide the configuration files for ResNet34 and DARTS7 for running automated channel size search.

  • configs/config_resnet.yaml
  • configs/config_darts.yaml

Dependency Extraction

Code for dependency extraction are in three primary modules: model to adjacency list conversion, adjacency list to linked list conversion, and linked list to dependency list conversion.

  • dependency/LLADJ.py: Functions for a variety of skeleton models for automated adjacency list extraction given pytorch model instance.
  • dependency/LinkedListConstructor.py: Automated conversion of a adjacency list representation to linked list.
  • dependency/getDependency.py: Extract dependencies based on linked list representation.

Metrics

Code for computing several metrics. Note that we use the QC Metric.

  • metrics/components.py: Helper functions for computing metrics
  • metrics/metrics.py: Script for computing different metrics

Models

Code for all supported models: ResNet34 and Darts7

  • models/darts.py: Pytorch construction of the Darts7 Model Architecture.
  • models/resnet.py: Pytorch construction of the ResNet34 Model Architecture

Optimizers

Code for all optimizer options and learning rate schedulers for training networks. Options include: AdaS, SGD, StepLR, MultiStepLR, CosineAnnealing, etc.

  • optim/*

Scaling Method

Channel size scaling algorithm between trials.

  • scaling_method/default_scaling.py: Contains the functions for scaling of channel sizes based on computed metrics.

Searching Algorithm

Code for channel size searching algorithms.

  • searching_algorithm/common.py: Common functions used for searching algorithms.
  • searching_algorithm/greedy.py: Greedy way of searching for channel sizes, always steps in the direction that yields the optimal local solution.
  • searching_algorithm/simulated_annealing.py: Simulated annealing inspired searching, induced stochasticity with magnitute of scaling.

Visualization

Helper functions for visualization of metric evolution.

  • visualization/draw_channel_scaling.py: visualization of channel size evolution.
  • visualization/plotting_layers_by_trial.py: visualization of layer channel size changes across different search trials.
  • visualization/plotting_metric_by_trial.py: visualization of metric evolution for different layers across search trials.
  • visualization/plotting_metric_by_epoch.py: visualization of metric evolution through the epochs during full train.

Utils

Helper functions for training.

  • utils/create_dataframe.py: Constructs dataframes for storing output files.
  • utils/test.py: Running accuracy and loss tests per epoch.
  • utils/train_helpers.py: Helper functions for training epochs.
  • utils/utils.py: Helper functions.
  • utils/weight_transfer.py: Function to execute knowledge distillation across trials.

Version History

  • 0.1
    • Initial Release
Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022