Model search is a framework that implements AutoML algorithms for model architecture search at scale

Overview

Model Search

header

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

The library enables you to:

  • Run many AutoML algorithms out of the box on your data - including automatically searching for the right model architecture, the right ensemble of models and the best distilled models.

  • Compare many different models that are found during the search.

  • Create you own search space to customize the types of layers in your neural networks.

The technical description of the capabilities of this framework are found in InterSpeech paper.

While this framework can potentially be used for regression problems, the current version supports classification problems only. Let's start by looking at some classic classification problems and see how the framework can automatically find competitive model architectures.

Getting Started

Let us start with the simplest case. You have a csv file where the features are numbers and you would like to run let AutoML find the best model architecture for you.

Below is a code snippet for doing so:

import model_search
from model_search import constants
from model_search import single_trainer
from model_search.data import csv_data

trainer = single_trainer.SingleTrainer(
    data=csv_data.Provider(
        label_index=0,
        logits_dimension=2,
        record_defaults=[0, 0, 0, 0],
        filename="model_search/data/testdata/csv_random_data.csv"),
    spec=constants.DEFAULT_DNN)

trainer.try_models(
    number_models=200,
    train_steps=1000,
    eval_steps=100,
    root_dir="/tmp/run_example",
    batch_size=32,
    experiment_name="example",
    experiment_owner="model_search_user")

The above code will try 200 different models - all binary classification models, as the logits_dimension is 2. The root directory will have a subdirectory of all models, all of which will be already evaluated. You can open the directory with tensorboard and see all the models with the evaluation metrics.

The search will be performed according to the default specification. That can be found in: model_search/configs/dnn_config.pbtxt.

For more details about the fields and if you want to create your own specification, you can look at: model_search/proto/phoenix_spec.proto.

Now, what if you don't have a csv with the features? The next section shows how to run without a csv.

Non-csv data

To run with non-csv data, you will have to implement a class inherited from the abstract class model_search.data.Provider. This enables us to define our own input_fn and hence customize the feature columns and the task (i.e., the number of classes in the classification task).

class Provider(object, metaclass=abc.ABCMeta):
  """A data provider interface.

  The Provider abstract class that defines three function for Estimator related
  training that return the following:
    * An input function for training and test input functions that return
      features and label batch tensors. It is responsible for parsing the
      dataset and buffering data.
    * The feature_columns for this dataset.
    * problem statement.
  """

  def get_input_fn(self, hparams, mode, batch_size: int):
    """Returns an `input_fn` for train and evaluation.

    Args:
      hparams: tf.HParams for the experiment.
      mode: Defines whether this is training or evaluation. See
        `estimator.ModeKeys`.
      batch_size: the batch size for training and eval.

    Returns:
      Returns an `input_fn` for train or evaluation.
    """

  def get_serving_input_fn(self, hparams):
    """Returns an `input_fn` for serving in an exported SavedModel.

    Args:
      hparams: tf.HParams for the experiment.

    Returns:
      Returns an `input_fn` that takes no arguments and returns a
        `ServingInputReceiver`.
    """

  @abc.abstractmethod
  def number_of_classes(self) -> int:
    """Returns the number of classes. Logits dim for regression."""

  def get_feature_columns(
      self
  ) -> List[Union[feature_column._FeatureColumn,
                  feature_column_v2.FeatureColumn]]:
    """Returns a `List` of feature columns."""

An example of an implementation can be found in model_search/data/csv_data.py.

Once you have this class, you can pass it to model_search.single_trainer.SingleTrainer and your single trainer can now read your data.

Adding your models and architectures to a search space

You can use our platform to test your own existing models.

Our system searches over what we call blocks. We have created an abstract API for an object that resembles a layer in a DNN. All that needs to be implemented for this class is two functions:

class Block(object, metaclass=abc.ABCMeta):
  """Block api for creating a new block."""

  @abc.abstractmethod
  def build(self, input_tensors, is_training, lengths=None):
    """Builds a block for phoenix.

    Args:
      input_tensors: A list of input tensors.
      is_training: Whether we are training. Used for regularization.
      lengths: The lengths of the input sequences in the batch.

    Returns:
      output_tensors: A list of the output tensors.
    """

  @abc.abstractproperty
  def is_input_order_important(self):
    """Is the order of the entries in the input tensor important.

    Returns:
      A bool specifying if the order of the entries in the input is important.
      Examples where the order is important: Input for a cnn layer.
      (e.g., pixels an image). Examples when the order is not important:
      Input for a dense layer.
    """

Once you have implemented your own blocks (i.e., layers), you need to register them with a decorator. Example:

@register_block(
    lookup_name='AVERAGE_POOL_2X2', init_args={'kernel_size': 2}, enum_id=8)
@register_block(
    lookup_name='AVERAGE_POOL_4X4', init_args={'kernel_size': 4}, enum_id=9)
class AveragePoolBlock(Block):
  """Average Pooling layer."""

  def __init__(self, kernel_size=2):
    self._kernel_size = kernel_size

  def build(self, input_tensors, is_training, lengths=None):

(All code above can be found in model_search/blocks.py). Once registered, you can tell the system to search over these blocks by supplying them in blocks_to_use in PhoenixSpec in model_search/proto/phoenix_spec.proto. Namely, if you look at the default specification for dnn found in model_search/configs/dnn_config.pbtxt, you can change the repeated field blocks_to_use and add you own registered blocks.

Note: Our system stacks blocks one on top of each other to create tower architectures that are then going to be ensembled. You can set the minimal and maximal depth allowed in the config to 1 which will change the system to search over which block perform best for the problem - I.e., your blocks can be now an implementation of full classifiers and the system will choose the best one.

Creating a training stand alone binary without writing a main

Now, let's assume you have the data class, but you don't want to write a main function to run it.

We created a simple way to create a main that will just train a dataset and is configurable via flags.

To create it, you need to follow two steps:

  1. You need to register your data provider.

  2. You need to call a help function to create a build rule.

Example: Suppose you have a provider, then you need to register it via a decorator we define it as follows:

@data.register_provider(lookup_name='csv_data_provider', init_args={})
class Provider(data.Provider):
  """A csv data provider."""

  def __init__(self):

The above code can be found in model_search/data/csv_data_for_binary.py.

Next, once you have such library (data provider defined in a .py file and registered), you can supply this library to a help build function an it will create a binary rule as follows:

model_search_oss_binary(
    name = "csv_data_binary",
    dataset_dep = ":csv_data_for_binary",
)

You can also add a test automatically to test integration of your provider with the system as follows:

model_search_oss_test(
    name = "csv_data_for_binary_test",
    dataset_dep = ":csv_data_for_binary",
    problem_type = "dnn",
    extra_args = [
        "--filename=$${TEST_SRCDIR}/model_search/data/testdata/csv_random_data.csv",
    ],
    test_data = [
        "//model_search/data/testdata:csv_random_data",
    ],
)

The above function will create a runable binary. The snippets are taken from the following file: model_search/data/BUILD. The binary is configurable by the flags in model_search/oss_trainer_lib.py.

Distributed Runs

Our system can run a distributed search - I.e., run many search trainer in parallel.

How does it work?

You need to run your binary on multiple machines. Additionally, you need to make one change to configure the bookkeeping of the search.

On a single machine, the bookkeeping is done via a file. For a distributed system however, we need a database.

In order to point our system to the database, you need to set the flags in the file:

model_search/metadata/ml_metadata_db.py

to point to your database.

Once you have done so, the binaries created from the previous section will connect to this database and an async search will begin.

Cloud AutoML

Want to try higher performance AutoML without writing code? Try: https://cloud.google.com/automl-tables

Owner
Google
Google ❤️ Open Source
Google
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022