DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Overview

DatasetGAN

This is the official code and data release for:

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Yuxuan Zhang*, Huan Ling*, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, Sanja Fidler

CVPR'21, Oral [paper] [supplementary] [Project Page]

News

  • Benchmark Challenge - A benchmark with diversed testing images is coming soon -- stay tuned!

  • Generated dataset for downstream tasks is coming soon -- stay tuned!

License

For any code dependency related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. To view a copy of this license, visit LICENSE.

The code of DatasetGAN is released under the MIT license. See LICENSE for additional details.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch 1.4.0 + is recommended.
  • This code is tested with CUDA 10.2 toolkit and CuDNN 7.5.
  • Please check the python package requirement from requirements.txt, and install using
pip install -r requirements.txt

Download Dataset from google drive and put it in the folder of ./datasetGAN/dataset_release. Please be aware that the dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Download pretrained checkpoint from Stylegan and convert the tensorflow checkpoint to pytorch. Put checkpoints in the folder of ./datasetGAN/dataset_release/stylegan_pretrain. Please be aware that the any code dependency and checkpoint related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Note: a good example of converting stylegan tensorlow checkpoint to pytorch is available this Link.

Training

To reproduce paper DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort:

cd datasetGAN
  1. Run Step1: Interpreter training.
  2. Run Step2: Sampling to generate massive annotation-image dataset.
  3. Run Step3: Train Downstream Task.

1. Interpreter Training

python train_interpreter.py --exp experiments/.json 

Note: Training time for 16 images is around one hour. 160G RAM is required to run 16 images training. One can cache the data returned from prepare_data function to disk but it will increase trianing time due to I/O burden.

Example of annotation schema for Face class. Please refer to paper for other classes.

img

2. Run GAN Sampling

python train_interpreter.py \
--generate_data True --exp experiments/.json  \
--resume [path-to-trained-interpreter in step3] \
--num_sample [num-samples]

To run sampling processes in parallel

sh datasetGAN/script/generate_face_dataset.sh

Example of sampling images and annotation:

img

3. Train Downstream Task

python train_deeplab.py \
--data_path [path-to-generated-dataset in step4] \
--exp experiments/.json

Inference

img

python test_deeplab_cross_validation.py --exp experiments/face_34.json\
--resume [path-to-downstream task checkpoint] --cross_validate True

June 21st Update:

For training interpreter, we change the upsampling method from nearnest upsampling to bilinar upsampling in line and update results in Table 1. The table reports mIOU.

Citations

Please ue the following citation if you use our data or code:

@inproceedings{zhang2021datasetgan,
  title={Datasetgan: Efficient labeled data factory with minimal human effort},
  author={Zhang, Yuxuan and Ling, Huan and Gao, Jun and Yin, Kangxue and Lafleche, Jean-Francois and Barriuso, Adela and Torralba, Antonio and Fidler, Sanja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10145--10155},
  year={2021}
}
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022