Evaluating AlexNet features at various depths

Overview

Linear Separability Evaluation

This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different convolutional levels -- in parallel. The training lasts 36 epochs and should be finished in <1.5days.

Usage

$python eval_linear_probes.py

usage: eval_linear_probes.py [-h] [--data DATA] [--ckpt-dir DIR] [--device d]
                             [--modelpath MODELPATH] [--workers N]
                             [--epochs N] [--batch-size N]
                             [--learning-rate FLOAT] [--tencrops] [--evaluate]
                             [--img-size IMG_SIZE] [--crop-size CROP_SIZE]
                             [--imagenet-path IMAGENET_PATH]

AlexNet standard linear separability tests

optional arguments:
  -h, --help            show this help message and exit
  --data DATA           Dataset Imagenet or Places (default: Imagenet)
  --ckpt-dir DIR        path to checkpoints (default: ./test)
  --device d            GPU device
  --modelpath MODELPATH
                        path to model
  --workers N           number of data loading workers (default: 6)
  --epochs N            number of epochs (default: 36)
  --batch-size N        batch size (default: 192)
  --learning-rate FLOAT
                        initial learning rate (default: 0.01)
  --tencrops            flag to not use tencrops (default: on)
  --evaluate            flag to evaluate only (default: off)
  --img-size IMG_SIZE   imagesize (default: 256)
  --crop-size CROP_SIZE
                        cropsize for CNN (default: 224)
  --imagenet-path IMAGENET_PATH
                        path to imagenet folder, where train and val are
                        located

Settings

The settings follow the caffe code provided in Zhang et al., with optional tencrops enabled. Average pooling can be used, but max-pooling is faster and overall more common so it is used here.

Reference

If you use this code, please consider citing the following paper:

Yuki M. Asano, Christian Rupprecht and Andrea Vedaldi. "A critical analysis of self-supervision, or what we can learn from a single image." Proc. ICLR (2020)

@inproceedings{asano2020a,
  title={A critical analysis of self-supervision, or what we can learn from a single image},
  author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2020},
}
Owner
Yuki M. Asano
I'm an Computer Vision researcher at the University of Amsterdam. Did my PhD at the Visual Geometry Group in Oxford.
Yuki M. Asano
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021