Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Overview

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Tweet

Project | Arxiv | YouTube | PWC | PWC

dataset1

Abstract

In recent years, deep learning-based methods have shown promising results in computer vision area. However, a common deep learning model requires a large amount of labeled data, which is labor-intensive to collect and label. What’s more, the model can be ruined due to the domain shift between training data and testing data. Text recognition is a broadly studied field in computer vision and suffers from the same problems noted above due to the diversity of fonts and complicated backgrounds. In this paper, we focus on the text recognition problem and mainly make three contributions toward these problems. First, we collect a multi-source domain adaptation dataset for text recognition, including five different domains with over five million images, which is the first multi-domain text recognition dataset to our best knowledge. Secondly, we propose a new method called Meta Self-Learning, which combines the self-learning method with the meta-learning paradigm and achieves a better recognition result under the scene of multi domain adaptation. Thirdly, extensive experiments are conducted on the dataset to provide a benchmark and also show the effectiveness of our method.

Data Prepare

Download the dataset from here.

Before using the raw data, you need to convert it to lmdb dataset.

python create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/

The data folder should be organized below

data
├── train_label.txt
└── imgs
    ├── 000000001.png
    ├── 000000002.png
    ├── 000000003.png
    └── ...

The format of train_label.txt should be {imagepath}\t{label}\n For example,

imgs/000000001.png Tiredness
imgs/000000002.png kills
imgs/000000003.png A

Requirements

  • Python == 3.7
  • Pytorch == 1.7.0
  • torchvision == 0.8.1
  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Argument

  • --train_data: folder path to training lmdb dataset.
  • --valid_data: folder path to validation lmdb dataset.
  • --select_data: select training data, examples are shown below
  • --batch_ratio: assign ratio for each selected data in the batch.
  • --Transformation: select Transformation module [None | TPS], in our method, we use None only.
  • --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet], in our method, we use ResNet only.
  • --SequenceModeling: select SequenceModeling module [None | BiLSTM], in our method, we use BiLSTM only.
  • --Prediction: select Prediction module [CTC | Attn], in our method, we use Attn only.
  • --saved_model: path to a pretrained model.
  • --valInterval: iteration interval for validation.
  • --inner_loop: update steps in the meta update, default is 1.
  • --source_num: number of source domains, default is 4.

Get started

  • Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.
  • Clone this repo:

git clone https://github.com/bupt-ai-cz/Meta-SelfLearning.git
cd Meta-SelfLearning

To train the baseline model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python train.py \
    --train_data data/train/ \
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --valInterval 5000

To train the meta_train model for synthetic domain using the pretrained model.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_train.py 
    --train_data data/train/ \ 
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn/ \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4  \
    --valInterval 5000 --inner_loop 1\
    --saved_model saved_models/pretrained.pth 

To train the pseudo-label model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python self_training.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4 \
    --warmup_threshold 28 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 \ 
    --saved_model saved_models/pretrained.pth 

To train the meta self-learning model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_self_learning.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --source_num 4 \
    --warmup_threshold 0 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 --inner_loop 1 \
    --saved_model pretrained_model/pretrained.pth 

Citation

If you use this data for your research, please cite our paper Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark

@article{qiu2021meta,
  title={Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark},
  author={Qiu, Shuhao and Zhu, Chuang and Zhou, Wenli},
  journal={arXiv preprint arXiv:2108.10840},
  year={2021}
}

License

This Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms bellow:

  1. That you include a reference to our Dataset in any work that makes use of the dataset. For research papers, cite our preferred publication as listed on our website; for other media cite our preferred publication as listed on our website or link to the our website.
  2. That you may not use the dataset or any derivative work for commercial purposes as, for example, licensing or selling the data, or using the data with a purpose to procure a commercial gain.

Privacy

Part of the data is constructed based on the processing of existing databases. Part of the data is crawled online or captured by ourselves. Part of the data is newly generated. We prohibit you from using the Datasets in any manner to identify or invade the privacy of any person. If you have any privacy concerns, including to remove your information from the Dataset, please contact us.

Contact

Reference

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021