(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Overview

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation)

Filtering by Cluster Consistency (FCC) is a very useful algorithm for filtering out wrong keypoint matches using cycle-consistency constraints. It is fast, accurate and memory efficient. It is purely based on sparse matrix operations and is completely decentralized. As a result, it is scalable to large matching matrix (millions by millions, as those in large scale SfM datasets e.g. Photo Tourism). It uses a special reweighting scheme, which can be viewed as a message passing procedure, to refine the classification of good/bad keypoint matches. The filtering result is often better than Spectral and SDP based methods and can be several order of magnitude faster.

To use our code, please cite the following paper: Yunpeng Shi, Shaohan Li, Tyler Maunu, Gilad Lerman. Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching, International Conference on 3D Vision (3DV), 2021

Usage

Checkout the demo code Demo_FCC.m. A sample output is as follows:

>> Demo_FCC
generate initial camera adjacency matrix
create camera intrinsic matrices. f (focal length) is set to 5000 pixel sizes
generate 3d point cloud (a sphere)
generate camera locations from 3d gaussian dist with radius constraints
generating 2d keypoints from camera projection matrices
generating and corrupting keypoint matches
start running FCC
iteration 1 Completed!
iteration 2 Completed!
iteration 3 Completed!
iteration 4 Completed!
iteration 5 Completed!
iteration 6 Completed!
iteration 7 Completed!
iteration 8 Completed!
iteration 9 Completed!
iteration 10 Completed!
Elapsed time is 0.782890 seconds.
classification error (Jaccard distance) = 0.031733
precision rate = 0.973654
recall rate = 0.994319

It often gives almost perfect separation between good and bad matches even when a large fraction of clean keypoint matches are removed or corrupted. The classification result is often better (and much faster) than spectral-based methods. The following is an example of histograms of our FCC statistics for clean and wrong keypoint matches. Our statistic measures the confidence that a match is clean (good).

Flexible Input and Informative Output

The function FCC.m takes matching matrix (Adjacency matrix of the keypoint matching graph, where the indices of keypoints (nodes) are grouped by images) as input. In principle, the input can also be a SIFT feature (or other features) similarity matrix (so not necessarily binary). This function outputs the statistics matrix that tells you for each keypoint match its probability of being a good match. Thus, it contains the confidence information, not just classification results. One can set different threshold levels (tradeoff between precision and recall) for the statistics matrix to obtain the filtered matches, depending on the tasks.

A novel Synthetic Model

We provide a new synthetic model that realistically mirror the real scenario, and allows control of different parameters. Please check FCC_synthetic_data.m. It generates a set of synthetic cameras, images, 3d points and 2d keypoints. It allows user to control the sparsity in camera correspondences and keypoint matches, and the corruption level and corruption mode (elementwise or inlier-outlier model) for keypoint matches.

Owner
Yunpeng Shi
Postdoctoral Research Associate at Princeton University
Yunpeng Shi
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022