PyTorch implementation of Densely Connected Time Delay Neural Network

Overview

Densely Connected Time Delay Neural Network

PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Connected Time Delay Neural Network for Speaker Verification" (INTERSPEECH 2020).

What's New ⚠️

  • [2021-02-14] We add an impl option in TimeDelay, now you can choose:

    • 'conv': implement TDNN by F.conv1d.
    • 'linear': implement TDNN by F.unfold and F.linear.

    Check this commit for more information. Note the pre-trained models of 'conv' have not been uploaded yet.

  • [2021-02-04] TDNN (default implementation) in this repo is slower than nn.Conv1d, but we adopted it because:

    • TDNN in this repo was also used to create F-TDNN models that are not perfectly supported by nn.Conv1d (asymmetric paddings).
    • nn.Conv1d(dilation>1, bias=True) is slow in training.

    However, we do not use F-TDNN here, and we always set bias=False in D-TDNN. So, we are considering uploading a new version of TDNN soon (2021-02-14 updated).

  • [2021-02-01] Our new paper is accepted by ICASSP 2021.

    Y.-Q. Yu, S. Zheng, H. Suo, Y. Lei, and W.-J. Li, "CAM: Context-Aware Masking for Robust Speaker Verification"

    CAM outperforms statistics-and-selection (SS) in terms of speed and accuracy.

Pretrained Models

We provide the pretrained models which can be used in many tasks such as:

  • Speaker Verification
  • Speaker-Dependent Speech Separation
  • Multi-Speaker Text-to-Speech
  • Voice Conversion

D-TDNN & D-TDNN-SS

Usage

Data preparation

You can either use Kaldi toolkit:

  • Download VoxCeleb1 test set and unzip it.
  • Place prepare_voxceleb1_test.sh under $kaldi_root/egs/voxceleb/v2 and change the $datadir and $voxceleb1_root in it.
  • Run chmod +x prepare_voxceleb1_test.sh && ./prepare_voxceleb1_test.sh to generate 30-dim MFCCs.
  • Place the trials under $datadir/test_no_sil.

Or checkout the kaldifeat branch if you do not want to install Kaldi.

Test

  • Download the pretrained D-TDNN model and run:
python evaluate.py --root $datadir/test_no_sil --model D-TDNN --checkpoint dtdnn.pth --device cuda

Evaluation

VoxCeleb1-O

Model Emb. Params (M) Loss Backend EER (%) DCF_0.01 DCF_0.001
TDNN 512 4.2 Softmax PLDA 2.34 0.28 0.38
E-TDNN 512 6.1 Softmax PLDA 2.08 0.26 0.41
F-TDNN 512 12.4 Softmax PLDA 1.89 0.21 0.29
D-TDNN 512 2.8 Softmax Cosine 1.81 0.20 0.28
D-TDNN-SS (0) 512 3.0 Softmax Cosine 1.55 0.20 0.30
D-TDNN-SS 512 3.5 Softmax Cosine 1.41 0.19 0.24
D-TDNN-SS 128 3.1 AAM-Softmax Cosine 1.22 0.13 0.20

Citation

If you find D-TDNN helps your research, please cite

@inproceedings{DBLP:conf/interspeech/YuL20,
  author    = {Ya-Qi Yu and
               Wu-Jun Li},
  title     = {Densely Connected Time Delay Neural Network for Speaker Verification},
  booktitle = {Annual Conference of the International Speech Communication Association (INTERSPEECH)},
  pages     = {921--925},
  year      = {2020}
}

Revision of the Paper ⚠️

References:

[16] X. Li, W. Wang, X. Hu, and J. Yang, "Selective Kernel Networks," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 510-519.

Comments
  • size mismatch while loading pre-trained weights

    size mismatch while loading pre-trained weights

    RuntimeError: Error(s) in loading state_dict for DTDNN: Missing key(s) in state_dict: "xvector.tdnn.linear.bias", "xvector.dense.linear.bias". size mismatch for xvector.tdnn.linear.weight: copying a param with shape torch.Size([128, 30, 5]) from checkpoint, the shape in current model is torch.Size([128, 150]). size mismatch for xvector.block1.tdnnd1.linear1.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([128, 128]). size mismatch for xvector.block1.tdnnd1.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd2.linear1.weight: copying a param with shape torch.Size([128, 192, 1]) from checkpoint, the shape in current model is torch.Size([128, 192]). size mismatch for xvector.block1.tdnnd2.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd3.linear1.weight: copying a param with shape torch.Size([128, 256, 1]) from checkpoint, the shape in current model is torch.Size([128, 256]). size mismatch for xvector.block1.tdnnd3.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd4.linear1.weight: copying a param with shape torch.Size([128, 320, 1]) from checkpoint, the shape in current model is torch.Size([128, 320]). size mismatch for xvector.block1.tdnnd4.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd5.linear1.weight: copying a param with shape torch.Size([128, 384, 1]) from checkpoint, the shape in current model is torch.Size([128, 384]). size mismatch for xvector.block1.tdnnd5.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd6.linear1.weight: copying a param with shape torch.Size([128, 448, 1]) from checkpoint, the shape in current model is torch.Size([128, 448]). size mismatch for xvector.block1.tdnnd6.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.transit1.linear.weight: copying a param with shape torch.Size([256, 512, 1]) from checkpoint, the shape in current model is torch.Size([256, 512]). size mismatch for xvector.block2.tdnnd1.linear1.weight: copying a param with shape torch.Size([128, 256, 1]) from checkpoint, the shape in current model is torch.Size([128, 256]). size mismatch for xvector.block2.tdnnd1.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd2.linear1.weight: copying a param with shape torch.Size([128, 320, 1]) from checkpoint, the shape in current model is torch.Size([128, 320]). size mismatch for xvector.block2.tdnnd2.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd3.linear1.weight: copying a param with shape torch.Size([128, 384, 1]) from checkpoint, the shape in current model is torch.Size([128, 384]). size mismatch for xvector.block2.tdnnd3.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd4.linear1.weight: copying a param with shape torch.Size([128, 448, 1]) from checkpoint, the shape in current model is torch.Size([128, 448]). size mismatch for xvector.block2.tdnnd4.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd5.linear1.weight: copying a param with shape torch.Size([128, 512, 1]) from checkpoint, the shape in current model is torch.Size([128, 512]). size mismatch for xvector.block2.tdnnd5.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd6.linear1.weight: copying a param with shape torch.Size([128, 576, 1]) from checkpoint, the shape in current model is torch.Size([128, 576]). size mismatch for xvector.block2.tdnnd6.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd7.linear1.weight: copying a param with shape torch.Size([128, 640, 1]) from checkpoint, the shape in current model is torch.Size([128, 640]). size mismatch for xvector.block2.tdnnd7.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd8.linear1.weight: copying a param with shape torch.Size([128, 704, 1]) from checkpoint, the shape in current model is torch.Size([128, 704]). size mismatch for xvector.block2.tdnnd8.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd9.linear1.weight: copying a param with shape torch.Size([128, 768, 1]) from checkpoint, the shape in current model is torch.Size([128, 768]). size mismatch for xvector.block2.tdnnd9.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd10.linear1.weight: copying a param with shape torch.Size([128, 832, 1]) from checkpoint, the shape in current model is torch.Size([128, 832]). size mismatch for xvector.block2.tdnnd10.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd11.linear1.weight: copying a param with shape torch.Size([128, 896, 1]) from checkpoint, the shape in current model is torch.Size([128, 896]). size mismatch for xvector.block2.tdnnd11.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd12.linear1.weight: copying a param with shape torch.Size([128, 960, 1]) from checkpoint, the shape in current model is torch.Size([128, 960]). size mismatch for xvector.block2.tdnnd12.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.transit2.linear.weight: copying a param with shape torch.Size([512, 1024, 1]) from checkpoint, the shape in current model is torch.Size([512, 1024]). size mismatch for xvector.dense.linear.weight: copying a param with shape torch.Size([512, 1024, 1]) from checkpoint, the shape in current model is torch.Size([512, 1024]).

    opened by zabir-nabil 3
  • 实验细节的疑问

    实验细节的疑问

    您好: 我想教下您的论文中,实验的实现细节: 1.实验数据:我看很多其他论文都是使用voxceleb2 dev 5994说话人作为训练集(或者voxceleb dev+voxceleb2 dev,1211+5994说话人),您有只在这部分说话人上的实验结果吗?方便透露下嘛?

    2.PLDA和Cosine Similarity:您这里实验比较这两个的EER在TDNN中是提取的是倒数第二层(分类器前一层)还是第三层(xvector)的输出啊?因为我在论文中又看到,这两个不同层embedding对不同方法性能有差异,倒数第二层的cosine方法可能会更好一些。

    Thanks!🙏

    opened by Wenhao-Yang 1
  • questions about model training

    questions about model training

    hello, yuyq96, Thank you so much for the great work you've shared. I learned that D-TDNNSS mini-batch setting 128 from D-TDNN paper. But this model is too large to train on single gpu. Could you tell me how you train it? Using nn.Parallel or DDP? Looking forward to you reply

    opened by forwiat 2
  • the difference between kaldifeat-kaldi and kaldifeat-python?

    the difference between kaldifeat-kaldi and kaldifeat-python?

    May I ask you the numerical difference between kaldifeat by kaldi implementation and kaldifeat by your python implementation? I have compared the two computed features, and I find it has some difference. I wonder that the experiment results showed in D-TDNN master and D-TDNN-kaldifeat branch is absolutely the same.

    Thanks~

    opened by mezhou 4
  • 针对论文的一些疑问

    针对论文的一些疑问

    您好,我觉得您的工作-DTDNN,在参数比较少的情况下获得了较ETDNN,FTDNN更好的结果,我认为这非常有意义。但是我对论文的实验存在两处疑惑: 1、论文中Table5中,基于softmax训练的D-TDNN模型Cosine的结果好于PLDA,在上面的TDNN,ETDNN,FTDNN的结果不一致(均是PLDA好于Cosine),请问这是什么原因导致的? 2、对于null branch,能稍微解释一下吗?

    opened by xuanjihe 10
Releases(trials)
Owner
Ya-Qi Yu
Machine Learning
Ya-Qi Yu
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022