《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Overview

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation


Overview


This is the demo code for training a motion invariant encoding network. The following diagram provides an overview of the network structure.

For more information, please visit http://geometry.cs.ucl.ac.uk/projects/2019/garment_authoring/

network

Structure


The project's directory is shown as follows. The data set is in the data_set folder, including cloth mesh(generated by Maya Qualoth), garment template, character animation and skeletons. Some supporting files can be found in support. The shape feature descriptor and motion invariant encoding network are saved in nnet.

├─data_set
│  ├─anim
│  ├─case
│  ├─garment
│  ├─skeleton
│  └─Maya
├─nnet
│  ├─basis
│  └─mie
├─support
│  ├─eval_basis
│  ├─eval_mie
│  ├─info_basis
│  └─info_mie
└─scripts

In the scripts folder, there are several python scripts which implement the training process. We also provide a data set for testing, generated from a sequence of dancing animation and a skirt.

Data Set


The data set includes not only the meshes and garment template, but also some supporting information. You can check the animation in the Maya folder. The animation information is saved in the anim folder. In the case folder, there are many meshes generated by Qualoth in different simulation parameters. The garment template is in the garment folder.

network

Installation


  • Clone the repo:
git clone https://github.com/YuanBoot/Intrinsic_Garment_Space.git

Model Training


Shape Descriptor

After all preparing works done, you can start to train the network. In scripts folder, some scripts named basis_* are used for training shape descriptor.

Run them as follows:

01.basis_prepare.py (data preparing)

02.basis_train.py (training)

03.basis_eval.py (evaluation)

After running 01 and 02 scripts, there will be a *.net file in the nnet/basis folder. It is the shape feature descriptor.

The result of a specific frame after running 03.basis_eval.py script. The yellow skirt is our output and the blue one is the ground truth. If the loss of the descriptor is low enough, these two skirt are almost overlap.

f2

Motion Invariant Encoding

Then, you can run mie_*.py scripts to get the motion invariant encoding network.

04.mie_prepare.py (data preparing)

05.mie_train.py (training)

06.mie_eval.py (evaluation)

If everything goes well, the exported mesh would be like the following figures. For the output from06.mie_eval.py is painted by red and the green one is the ground truth.

f3

Owner
YuanBo
YuanBo
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023