We are More than Our JOints: Predicting How 3D Bodies Move

Overview

We are More than Our JOints: Predicting How 3D Bodies Move

Citation

This repo contains the official implementation of our paper MOJO:

@inproceedings{Zhang:CVPR:2021,
  title = {We are More than Our Joints: Predicting how {3D} Bodies Move},
  author = {Zhang, Yan and Black, Michael J. and Tang, Siyu},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

License

We employ CC BY-NC-SA 4.0 for the MOJO code, which covers

models/fittingop.py
experiments/utils/batch_gen_amass.py
experiments/utils/utils_canonicalize_amass.py
experiments/utils/utils_fitting_jts2mesh.py
experiments/utils/vislib.py
experiments/vis_*_amass.py

The rest part are developed based on DLow. According to their license, the implementation follows its CMU license.

Environment & code structure

  • Tested OS: Linux Ubuntu 18.04
  • Packages:
  • Note: All scripts should be run from the root of this repo to avoid path issues. Also, please fix some path configs in the code, otherwise errors will occur.

Training

The training is split to two steps. Provided we have a config file in experiments/cfg/amass_mojo_f9_nsamp50.yml, we can do

  • python experiments/train_MOJO_vae.py --cfg amass_mojo_f9_nsamp50 to train the MOJO
  • python experiments/train_MOJO_dlow.py --cfg amass_mojo_f9_nsamp50 to train the DLow

Evaluation

These experiments/eval_*.py files are for evaluation. For eval_*_pred.py, they can be used either to evaluate the results while predicting, or to save results to a file for further evaluation and visualization. An example is python experiments/eval_kps_pred.py --cfg amass_mojo_f9_nsamp50 --mode vis, which is to save files to the folder results/amass_mojo_f9_nsamp50.

Generation

In MOJO, the recursive projection scheme is to get 3D bodies from markers and keep the body valid. The relevant implementation is mainly in models/fittingop.py and experiments/test_recursive_proj.py. An example to run is

python experiments/test_recursive_proj.py --cfg amass_mojo_f9_nsamp50 --testdata ACCAD --gpu_index 0

Datasets

In MOJO, we have used AMASS, Human3.6M, and HumanEva.

For Human3.6M and HumanEva, we follow the same pre-processing step as in DLow, VideoPose3D, and others. Please refer to their pages, e.g. this one, for details.

For AMASS, we perform canonicalization of motion sequences with our own procedures. The details are in experiments/utils_canonicalize_amass.py. We find this sequence canonicalization procedure is important. The canonicalized AMASS used in our work can be downloaded here, which includes the random sample names of ACCAD and BMLhandball used in our experiments about motion realism.

Models

For human body modeling, we employ the SMPL-X parametric body model. You need to follow their license and download. Based on SMPL-X, we can use the body joints or a sparse set of body mesh vertices (the body markers) to represent the body.

  • CMU It has 41 markers, the corresponding SMPL-X mesh vertex ID can be downloaded here.
  • SSM2 It has 64 markers, the corresponding SMPL-X mesh vertex ID can be downloaded here.
  • Joints We used 22 joints. No need to download, but just obtain them from the SMPL-X body model. See details in the code.

Our CVAE model configurations are in experiments/cfg. The pre-trained checkpoints can be downloaded here.

Related projects

  • AMASS: It unifies diverse motion capture data with the SMPL-H model, and provides a large-scale high-quality dataset. Its official codebase and tutorials are in this github repo.

  • GRAB: Most mocap data only contains the body motion. GRAB, however, provides high-quality data of human-object interactions. Besides capturing the body motion, the object motion and the hand-object contact are captured simultaneously. More demonstrations are in its github repo.

Acknowledgement & disclaimer

We thank Nima Ghorbani for the advice on the body marker setting and the {\bf AMASS} dataset. We thank Yinghao Huang, Cornelia K"{o}hler, Victoria Fern'{a}ndez Abrevaya, and Qianli Ma for proofreading. We thank Xinchen Yan and Ye Yuan for discussions on baseline methods. We thank Shaofei Wang and Siwei Zhang for their help with the user study and the presentation, respectively.

MJB has received research gift funds from Adobe, Intel, Nvidia, Facebook, and Amazon. While MJB is a part-time employee of Amazon, his research was performed solely at, and funded solely by, Max Planck. MJB has financial interests in Amazon Datagen Technologies, and Meshcapade GmbH.

Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022