We are More than Our JOints: Predicting How 3D Bodies Move

Overview

We are More than Our JOints: Predicting How 3D Bodies Move

Citation

This repo contains the official implementation of our paper MOJO:

@inproceedings{Zhang:CVPR:2021,
  title = {We are More than Our Joints: Predicting how {3D} Bodies Move},
  author = {Zhang, Yan and Black, Michael J. and Tang, Siyu},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

License

We employ CC BY-NC-SA 4.0 for the MOJO code, which covers

models/fittingop.py
experiments/utils/batch_gen_amass.py
experiments/utils/utils_canonicalize_amass.py
experiments/utils/utils_fitting_jts2mesh.py
experiments/utils/vislib.py
experiments/vis_*_amass.py

The rest part are developed based on DLow. According to their license, the implementation follows its CMU license.

Environment & code structure

  • Tested OS: Linux Ubuntu 18.04
  • Packages:
  • Note: All scripts should be run from the root of this repo to avoid path issues. Also, please fix some path configs in the code, otherwise errors will occur.

Training

The training is split to two steps. Provided we have a config file in experiments/cfg/amass_mojo_f9_nsamp50.yml, we can do

  • python experiments/train_MOJO_vae.py --cfg amass_mojo_f9_nsamp50 to train the MOJO
  • python experiments/train_MOJO_dlow.py --cfg amass_mojo_f9_nsamp50 to train the DLow

Evaluation

These experiments/eval_*.py files are for evaluation. For eval_*_pred.py, they can be used either to evaluate the results while predicting, or to save results to a file for further evaluation and visualization. An example is python experiments/eval_kps_pred.py --cfg amass_mojo_f9_nsamp50 --mode vis, which is to save files to the folder results/amass_mojo_f9_nsamp50.

Generation

In MOJO, the recursive projection scheme is to get 3D bodies from markers and keep the body valid. The relevant implementation is mainly in models/fittingop.py and experiments/test_recursive_proj.py. An example to run is

python experiments/test_recursive_proj.py --cfg amass_mojo_f9_nsamp50 --testdata ACCAD --gpu_index 0

Datasets

In MOJO, we have used AMASS, Human3.6M, and HumanEva.

For Human3.6M and HumanEva, we follow the same pre-processing step as in DLow, VideoPose3D, and others. Please refer to their pages, e.g. this one, for details.

For AMASS, we perform canonicalization of motion sequences with our own procedures. The details are in experiments/utils_canonicalize_amass.py. We find this sequence canonicalization procedure is important. The canonicalized AMASS used in our work can be downloaded here, which includes the random sample names of ACCAD and BMLhandball used in our experiments about motion realism.

Models

For human body modeling, we employ the SMPL-X parametric body model. You need to follow their license and download. Based on SMPL-X, we can use the body joints or a sparse set of body mesh vertices (the body markers) to represent the body.

  • CMU It has 41 markers, the corresponding SMPL-X mesh vertex ID can be downloaded here.
  • SSM2 It has 64 markers, the corresponding SMPL-X mesh vertex ID can be downloaded here.
  • Joints We used 22 joints. No need to download, but just obtain them from the SMPL-X body model. See details in the code.

Our CVAE model configurations are in experiments/cfg. The pre-trained checkpoints can be downloaded here.

Related projects

  • AMASS: It unifies diverse motion capture data with the SMPL-H model, and provides a large-scale high-quality dataset. Its official codebase and tutorials are in this github repo.

  • GRAB: Most mocap data only contains the body motion. GRAB, however, provides high-quality data of human-object interactions. Besides capturing the body motion, the object motion and the hand-object contact are captured simultaneously. More demonstrations are in its github repo.

Acknowledgement & disclaimer

We thank Nima Ghorbani for the advice on the body marker setting and the {\bf AMASS} dataset. We thank Yinghao Huang, Cornelia K"{o}hler, Victoria Fern'{a}ndez Abrevaya, and Qianli Ma for proofreading. We thank Xinchen Yan and Ye Yuan for discussions on baseline methods. We thank Shaofei Wang and Siwei Zhang for their help with the user study and the presentation, respectively.

MJB has received research gift funds from Adobe, Intel, Nvidia, Facebook, and Amazon. While MJB is a part-time employee of Amazon, his research was performed solely at, and funded solely by, Max Planck. MJB has financial interests in Amazon Datagen Technologies, and Meshcapade GmbH.

[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023