The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

Overview

3D Human Pose Estimation with Spatial and Temporal Transformers

This repo is the official implementation for 3D Human Pose Estimation with Spatial and Temporal Transformers.

Video Demonstration

PoseFormer Architecture

Video Demo

3D HPE on Human3.6M

3D HPE on videos in-the-wild using PoseFormer

Our code is built on top of VideoPose3D.

Environment

The code is developed and tested under the following environment

  • Python 3.8.2
  • PyTorch 1.7.1
  • CUDA 11.0

You can create the environment:

conda env create -f poseformer.yml

Dataset

Our code is compatible with the dataset setup introduced by Martinez et al. and Pavllo et al.. Please refer to VideoPose3D to set up the Human3.6M dataset (./data directory).

Evaluating pre-trained models

We provide the pre-trained 81-frame model (CPN detected 2D pose as input) here. To evaluate it, put it into the ./checkpoint directory and run:

python run_poseformer.py -k cpn_ft_h36m_dbb -f 81 -c checkpoint --evaluate detected81f.bin

We also provide pre-trained 81-frame model (Ground truth 2D pose as input) here. To evaluate it, put it into the ./checkpoint directory and run:

python run_poseformer.py -k gt -f 81 -c checkpoint --evaluate gt81f.bin

Training new models

  • To train a model from scratch (CPN detected 2D pose as input), run:
python run_poseformer.py -k cpn_ft_h36m_dbb -f 27 -lr 0.00004 -lrd 0.99

-f controls how many frames are used as input. 27 frames achieves 47.0 mm, 81 frames achieves achieves 44.3 mm.

  • To train a model from scratch (Ground truth 2D pose as input), run:
python run_poseformer.py -k gt -f 81 -lr 0.0004 -lrd 0.99

81 frames achieves 31.3 mm (MPJPE).

Visualization and other functions

We keep our code consistent with VideoPose3D. Please refer to their project page for further information.

Bibtex

If you find our work useful in your research, please consider citing:

@article{zheng20213d,
title={3D Human Pose Estimation with Spatial and Temporal Transformers},
author={Zheng, Ce and Zhu, Sijie and Mendieta, Matias and Yang, Taojiannan and Chen, Chen and Ding, Zhengming},
journal={arXiv preprint arXiv:2103.10455},
year={2021}
}

Acknowledgement

Part of our code is borrowed from VideoPose3D. We thank the authors for releasing the codes.

Owner
Ce Zheng
Ce Zheng
Ce Zheng
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023