PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

Overview

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra

The purpose of this project is to demonstrate a structured streaming pipeline with Apache Spark. The process consists of given steps:

  1. Installation Process
  2. Prepare a robotic simulation environment to generate data to feed into the Kafka.
  3. Prepare Kafka and Zookeeper environment to store discrete data.
  4. Prepare Cassandra environment to store analyzed data.
  5. Prepare Apache Spark structured streaming pipeline, integrate with Kafka and Cassandra.
  6. Result

0. Installation Processes

You are able to install all required components to realize this project using the given steps.

Installation of ROS and Turtlebot3

We won't address the whole installation process of ROS and Turtlebot3 but you can access all required info from ROS & Turtlebot3 Installation.

After all installations are completed, you can demo our robotic environment using the given commands:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

You should see a view like the one given below.

Installation of Kafka and Zookeeper

We won't address the whole installation process of Kafka and Zookeeper but you can access all required info from Kafka & Zookeeper Installation.

After all installations are completed, you can demo Kafka using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "demo" topic
bin/kafka-topics.sh --create --topic demo --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Once you create "demo" topic, you can run kafka-demo/producer.py and kafka-demo/consumer.py respectively to check your setup.

If you haven't installed kafka-python, use the given command and then run given files.

pip install kafka-python
  • producer.py
import time,json,random
from datetime import datetime
from data_generator import generate_message
from kafka import KafkaProducer

def serializer(message):
    return json.dumps(message).encode("utf-8")
    
producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=serializer
)

if __name__=="__main__":
    while True:
        dummy_messages=generate_message()
        print(f"Producing message {datetime.now()} | Message = {str(dummy_messages)}")
        producer.send("demo",dummy_messages)
        time.sleep(2)
  • consumer.py
import json
from kafka import KafkaConsumer

if __name__=="__main__":
    consumer=KafkaConsumer(
        "demo",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="latest"    )

    for msg in consumer:
        print(json.loads(msg.value))

You should see a view like the one given below after run the commands:

python3 producer.py
python3 consumer.py

Installation of Cassandra

We won't address the whole installation process of Cassandra but you can access all required info from Cassandra Installation.

After all installations are completed, you can demo Cassandra using cqlsh. You can check this link.

Installation of Apache Spark

We won't address the whole installation process of Apache Spark but you can access all required info from Apache Spark Installation.

After all installations are completed, you can make a quick example like here.

1. Prepare a robotic simulation environment

ROS (Robot Operating System) allows us to design a robotic environment. We will use Turtlebot3, a robot in Gazebo simulation env, to generate data for our use case. Turtlebot3 publishes its data with ROS topics. Therefore, we will subscribe the topic and send data into Kafka.

Run the simulation environment and analysis the data we will use

Turtlebot3 publishes its odometry data with ROS "odom" topic. So, we can see the published data with the given command:

# run the simulation environment
roslaunch turtlebot3_gazebo turtlebot3_world.launch

# check the topic to see data
rostopic echo /odom

You should see a view like the one given below.

header: 
  seq: 10954
  stamp: 
    secs: 365
    nsecs: 483000000
  frame_id: "odom"
child_frame_id: "base_footprint"
pose: 
  pose: 
    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526
  covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0,...
twist: 
  twist: 
    linear: 
      x: 5.8050405333644035e-08
      y: 7.749200305343809e-07
      z: 0.0
    angular: 
      x: 0.0
      y: 0.0
      z: 1.15143519181447e-05
  covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

In this use case, we will just interest the given part of the data:

    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526

2. Prepare Kafka and Zookeeper environment

The data produced by Turtlebot3 will stored into Kafka clusters.

Prepare Kafka for Use Case

First of all, we will create a new Kafka topic namely odometry for ROS odom data using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "odometry" topic for ROS odom data
bin/kafka-topics.sh --create --topic odometry --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Then we will write a ROS subscriber to listen to the data from Turtlebot3. Also, since we need to send data to Kafka, it is necessary to add a producer script in it. We will use ros/publish2kafka.py to do it. This script subscribes to the odom topic and sends the content of the topic to Kafka.

import rospy
from nav_msgs.msg import Odometry
import json
from datetime import datetime
from kafka import KafkaProducer

count = 0
def callback(msg):
    global count
    messages={
        "id":count,
        "posex":float("{0:.5f}".format(msg.pose.pose.position.x)),
        "posey":float("{0:.5f}".format(msg.pose.pose.position.y)),
        "posez":float("{0:.5f}".format(msg.pose.pose.position.z)),
        "orientx":float("{0:.5f}".format(msg.pose.pose.orientation.x)),
        "orienty":float("{0:.5f}".format(msg.pose.pose.orientation.y)),
        "orientz":float("{0:.5f}".format(msg.pose.pose.orientation.z)),
        "orientw":float("{0:.5f}".format(msg.pose.pose.orientation.w))
        }

    print(f"Producing message {datetime.now()} Message :\n {str(messages)}")
    producer.send("odometry",messages)
    count+=1

producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=lambda message: json.dumps(message).encode('utf-8')
)

if __name__=="__main__":

    rospy.init_node('odomSubscriber', anonymous=True)
    rospy.Subscriber('odom',Odometry,callback)
    rospy.spin()

You can use ros/readFromKafka.py to check the data is really reach Kafka while ROS and publish2kafka.py is running.

import json
from kafka import KafkaConsumer

if __name__=="__main__":

    consumer=KafkaConsumer(
        "odometry",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="earliest"
    )

    for msg in consumer:
        print(json.loads(msg.value))

3. Prepare Cassandra environment

Prepare Cassandra for Use Case

Initially, we will create a keyspace and then a topic in it using given command:

# Open the cqlsh and then run the command to create 'ros' keyspace
cqlsh> CREATE KEYSPACE ros WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 1};

# Then, run the command to create 'odometry' topic in 'ros'
cqlsh> create table ros.odometry(
        id int primary key, 
        posex float,
        posey float,
        posez float,
        orientx float,
        orienty float,
        orientz float,
        orientw float);

# Check your setup is correct
cqlsh> DESCRIBE ros

#and
cqlsh> DESCRIBE ros.odometry

⚠️ The content of topic has to be the same as Spark schema: Be very careful here!

4. Prepare Apache Spark structured streaming pipeline

You are able to write analysis results to either console or Cassandra.

(First Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Cassandra

We will write streaming script that read odometry topic from Kafka, analyze it and then write results to Cassandra. We will use spark-demo/streamingKafka2Cassandra.py to do it.

First of all, we create a schema same as we already defined in Cassandra.

⚠️ The content of schema has to be the same as Casssandra table: Be very careful here!

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

Then, we create a Spark Session using two packages:

  • for spark kafka connector : org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0
  • for spark cassandra connector : com.datastax.spark:spark-cassandra-connector_2.12:3.0.0
spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

⚠️ If you use spark-submit you can specify the packages as:

  • spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0 spark_cassandra.py

In order to read Kafka stream, we use readStream() and specify Kafka configurations as the given below:

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

Since Kafka send data as binary, first we need to convert the binary value to String using selectExpr() as the given below:

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

Although Apache Spark isn't capable of directly write stream data to Cassandra yet (using writeStream()), we can do it with use foreachBatch() as the given below:

def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

Finally, we got the given script spark-demo/streamingKafka2Cassandra.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,FloatType,IntegerType
from pyspark.sql.functions import from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")


df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df.printSchema()

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

# It is possible to analysis data here using df1


def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

(Second Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Console

There are a few differences between writing to the console and writing to Cassandra. First of all, we don't need to use cassandra connector, so we remove it from packages.

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()

With writeStream() we can write stream data directly to the console.

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

The rest of the process takes place in the same way as the previous one. Finally, we got the given script spark-demo/streamingKafka2Console.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,LongType,IntegerType,FloatType,StringType
from pyspark.sql.functions import split,from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

5. Result

After all the process is done, we got the data in our Cassandra table as the given below:

You can query the given command to see your table:

# Open the cqlsh 
cqlsh
# Then write select query to see content of the table
cqlsh> select * from ros.odometry

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021