PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

Overview

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra

The purpose of this project is to demonstrate a structured streaming pipeline with Apache Spark. The process consists of given steps:

  1. Installation Process
  2. Prepare a robotic simulation environment to generate data to feed into the Kafka.
  3. Prepare Kafka and Zookeeper environment to store discrete data.
  4. Prepare Cassandra environment to store analyzed data.
  5. Prepare Apache Spark structured streaming pipeline, integrate with Kafka and Cassandra.
  6. Result

0. Installation Processes

You are able to install all required components to realize this project using the given steps.

Installation of ROS and Turtlebot3

We won't address the whole installation process of ROS and Turtlebot3 but you can access all required info from ROS & Turtlebot3 Installation.

After all installations are completed, you can demo our robotic environment using the given commands:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

You should see a view like the one given below.

Installation of Kafka and Zookeeper

We won't address the whole installation process of Kafka and Zookeeper but you can access all required info from Kafka & Zookeeper Installation.

After all installations are completed, you can demo Kafka using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "demo" topic
bin/kafka-topics.sh --create --topic demo --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Once you create "demo" topic, you can run kafka-demo/producer.py and kafka-demo/consumer.py respectively to check your setup.

If you haven't installed kafka-python, use the given command and then run given files.

pip install kafka-python
  • producer.py
import time,json,random
from datetime import datetime
from data_generator import generate_message
from kafka import KafkaProducer

def serializer(message):
    return json.dumps(message).encode("utf-8")
    
producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=serializer
)

if __name__=="__main__":
    while True:
        dummy_messages=generate_message()
        print(f"Producing message {datetime.now()} | Message = {str(dummy_messages)}")
        producer.send("demo",dummy_messages)
        time.sleep(2)
  • consumer.py
import json
from kafka import KafkaConsumer

if __name__=="__main__":
    consumer=KafkaConsumer(
        "demo",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="latest"    )

    for msg in consumer:
        print(json.loads(msg.value))

You should see a view like the one given below after run the commands:

python3 producer.py
python3 consumer.py

Installation of Cassandra

We won't address the whole installation process of Cassandra but you can access all required info from Cassandra Installation.

After all installations are completed, you can demo Cassandra using cqlsh. You can check this link.

Installation of Apache Spark

We won't address the whole installation process of Apache Spark but you can access all required info from Apache Spark Installation.

After all installations are completed, you can make a quick example like here.

1. Prepare a robotic simulation environment

ROS (Robot Operating System) allows us to design a robotic environment. We will use Turtlebot3, a robot in Gazebo simulation env, to generate data for our use case. Turtlebot3 publishes its data with ROS topics. Therefore, we will subscribe the topic and send data into Kafka.

Run the simulation environment and analysis the data we will use

Turtlebot3 publishes its odometry data with ROS "odom" topic. So, we can see the published data with the given command:

# run the simulation environment
roslaunch turtlebot3_gazebo turtlebot3_world.launch

# check the topic to see data
rostopic echo /odom

You should see a view like the one given below.

header: 
  seq: 10954
  stamp: 
    secs: 365
    nsecs: 483000000
  frame_id: "odom"
child_frame_id: "base_footprint"
pose: 
  pose: 
    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526
  covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0,...
twist: 
  twist: 
    linear: 
      x: 5.8050405333644035e-08
      y: 7.749200305343809e-07
      z: 0.0
    angular: 
      x: 0.0
      y: 0.0
      z: 1.15143519181447e-05
  covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

In this use case, we will just interest the given part of the data:

    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526

2. Prepare Kafka and Zookeeper environment

The data produced by Turtlebot3 will stored into Kafka clusters.

Prepare Kafka for Use Case

First of all, we will create a new Kafka topic namely odometry for ROS odom data using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "odometry" topic for ROS odom data
bin/kafka-topics.sh --create --topic odometry --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Then we will write a ROS subscriber to listen to the data from Turtlebot3. Also, since we need to send data to Kafka, it is necessary to add a producer script in it. We will use ros/publish2kafka.py to do it. This script subscribes to the odom topic and sends the content of the topic to Kafka.

import rospy
from nav_msgs.msg import Odometry
import json
from datetime import datetime
from kafka import KafkaProducer

count = 0
def callback(msg):
    global count
    messages={
        "id":count,
        "posex":float("{0:.5f}".format(msg.pose.pose.position.x)),
        "posey":float("{0:.5f}".format(msg.pose.pose.position.y)),
        "posez":float("{0:.5f}".format(msg.pose.pose.position.z)),
        "orientx":float("{0:.5f}".format(msg.pose.pose.orientation.x)),
        "orienty":float("{0:.5f}".format(msg.pose.pose.orientation.y)),
        "orientz":float("{0:.5f}".format(msg.pose.pose.orientation.z)),
        "orientw":float("{0:.5f}".format(msg.pose.pose.orientation.w))
        }

    print(f"Producing message {datetime.now()} Message :\n {str(messages)}")
    producer.send("odometry",messages)
    count+=1

producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=lambda message: json.dumps(message).encode('utf-8')
)

if __name__=="__main__":

    rospy.init_node('odomSubscriber', anonymous=True)
    rospy.Subscriber('odom',Odometry,callback)
    rospy.spin()

You can use ros/readFromKafka.py to check the data is really reach Kafka while ROS and publish2kafka.py is running.

import json
from kafka import KafkaConsumer

if __name__=="__main__":

    consumer=KafkaConsumer(
        "odometry",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="earliest"
    )

    for msg in consumer:
        print(json.loads(msg.value))

3. Prepare Cassandra environment

Prepare Cassandra for Use Case

Initially, we will create a keyspace and then a topic in it using given command:

# Open the cqlsh and then run the command to create 'ros' keyspace
cqlsh> CREATE KEYSPACE ros WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 1};

# Then, run the command to create 'odometry' topic in 'ros'
cqlsh> create table ros.odometry(
        id int primary key, 
        posex float,
        posey float,
        posez float,
        orientx float,
        orienty float,
        orientz float,
        orientw float);

# Check your setup is correct
cqlsh> DESCRIBE ros

#and
cqlsh> DESCRIBE ros.odometry

⚠️ The content of topic has to be the same as Spark schema: Be very careful here!

4. Prepare Apache Spark structured streaming pipeline

You are able to write analysis results to either console or Cassandra.

(First Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Cassandra

We will write streaming script that read odometry topic from Kafka, analyze it and then write results to Cassandra. We will use spark-demo/streamingKafka2Cassandra.py to do it.

First of all, we create a schema same as we already defined in Cassandra.

⚠️ The content of schema has to be the same as Casssandra table: Be very careful here!

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

Then, we create a Spark Session using two packages:

  • for spark kafka connector : org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0
  • for spark cassandra connector : com.datastax.spark:spark-cassandra-connector_2.12:3.0.0
spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

⚠️ If you use spark-submit you can specify the packages as:

  • spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0 spark_cassandra.py

In order to read Kafka stream, we use readStream() and specify Kafka configurations as the given below:

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

Since Kafka send data as binary, first we need to convert the binary value to String using selectExpr() as the given below:

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

Although Apache Spark isn't capable of directly write stream data to Cassandra yet (using writeStream()), we can do it with use foreachBatch() as the given below:

def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

Finally, we got the given script spark-demo/streamingKafka2Cassandra.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,FloatType,IntegerType
from pyspark.sql.functions import from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")


df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df.printSchema()

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

# It is possible to analysis data here using df1


def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

(Second Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Console

There are a few differences between writing to the console and writing to Cassandra. First of all, we don't need to use cassandra connector, so we remove it from packages.

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()

With writeStream() we can write stream data directly to the console.

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

The rest of the process takes place in the same way as the previous one. Finally, we got the given script spark-demo/streamingKafka2Console.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,LongType,IntegerType,FloatType,StringType
from pyspark.sql.functions import split,from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

5. Result

After all the process is done, we got the data in our Cassandra table as the given below:

You can query the given command to see your table:

# Open the cqlsh 
cqlsh
# Then write select query to see content of the table
cqlsh> select * from ros.odometry

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
An Integrated Experimental Platform for time series data anomaly detection.

Curve Sorry to tell contributors and users. We decided to archive the project temporarily due to the employee work plan of collaborators. There are no

Baidu 486 Dec 21, 2022
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022