Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Related tags

Deep LearningD2STGNN
Overview

Decoupled Spatial-Temporal Graph Neural Networks

Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

Traffic forecasting is an indispensable part of building intelligent transportation systems and has remained an enduring research topic in academia and industry. Recently, spatial-temporal (ST) graph neural networks have been proposed to model complex temporal and spatial dependencies in traffic data, and have made significant progress. However, existing models simply connect the spatial and temporal models in series, which ignores the special characteristics of spatial and temporal information. Moreover, the serial connection structure may cause error accumulation, leading to worse model performance.

To address the problem, we propose a novel spatial-temporal framework consisting of a unique spatial gate and a residual decomposition mechanism, which is capable of facilitating the sufficient learning process of downstream modules via decoupling spatial and temporal signals. With the decoupled ST framework, we also propose Decoupled Dynamic Spatial-Temporal Graph Neural Network (D$^2$STGNN in short), which aptly captures spatial-temporal dependencies and is enhanced by a dynamic graph learning module, for learning the dynamic characteristics of traffic networks. Extensive experiments on four real-world traffic datasets demonstrate the effectiveness of the proposed method.

1. Run the model and reproduce the result?

1.1 Data Preparation

For convenience, we package these datasets used in our model in Google Drive or BaiduYun.

They should be downloaded to the code root dir and replace the raw_data and sensor_graph folder in the datasets folder by:

cd /path/to/project
unzip raw_data.zip -d ./datasets/
unzip sensor_graph.zip -d ./datasets/
rm {sensor_graph.zip,raw_data.zip}
mkdir log output

Alterbatively, the datasets can be found as follows:

  • METR-LA and PEMS-BAY: These datasets were released by DCRNN[1]. Data can be found in its GitHub repository, where the sensor graphs are also provided.

  • PEMS03 and PEMS04: These datasets were released by ASTGCN[2] and ASTGNN[3]. Data can also be found in its GitHub repository.

1.2 Data Process

python datasets/raw_data/$DATASET_NAME/generate_training_data.py

Replace $DATASET_NAME with one of METR-LA, PEMS-BAY, PEMS04, PEMS08.

The processed data is placed in datasets/$DATASET_NAME.

1.3 Training the Model

python main.py --dataset=$DATASET_NAME

E.g., python main.py --dataset=METR-LA.

1.4 Load a Pretrained Model

Check the config files of the dataset in configs/$DATASET_NAME, and set the startup args to test mode.

Download the pre-trained model files into the output folder and run the command line in 1.3.

1.5 Results and Visualization

TheTable

Visualization

2. More QA?

Any issues are welcome.

3. To Do

  • Add results and visualization in this readme.
  • Add BaiduYun links.
  • Add pretrained model.
  • 添加中文README

References

[1] Atwood J, Towsley D. Diffusion-convolutional neural networks[J]. Advances in neural information processing systems, 2016, 29: 1993-2001.

[2] Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 922-929.

[3] Guo S, Lin Y, Wan H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021.

Owner
S22
实事求是
S22
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023