Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Related tags

Deep LearningD2STGNN
Overview

Decoupled Spatial-Temporal Graph Neural Networks

Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

Traffic forecasting is an indispensable part of building intelligent transportation systems and has remained an enduring research topic in academia and industry. Recently, spatial-temporal (ST) graph neural networks have been proposed to model complex temporal and spatial dependencies in traffic data, and have made significant progress. However, existing models simply connect the spatial and temporal models in series, which ignores the special characteristics of spatial and temporal information. Moreover, the serial connection structure may cause error accumulation, leading to worse model performance.

To address the problem, we propose a novel spatial-temporal framework consisting of a unique spatial gate and a residual decomposition mechanism, which is capable of facilitating the sufficient learning process of downstream modules via decoupling spatial and temporal signals. With the decoupled ST framework, we also propose Decoupled Dynamic Spatial-Temporal Graph Neural Network (D$^2$STGNN in short), which aptly captures spatial-temporal dependencies and is enhanced by a dynamic graph learning module, for learning the dynamic characteristics of traffic networks. Extensive experiments on four real-world traffic datasets demonstrate the effectiveness of the proposed method.

1. Run the model and reproduce the result?

1.1 Data Preparation

For convenience, we package these datasets used in our model in Google Drive or BaiduYun.

They should be downloaded to the code root dir and replace the raw_data and sensor_graph folder in the datasets folder by:

cd /path/to/project
unzip raw_data.zip -d ./datasets/
unzip sensor_graph.zip -d ./datasets/
rm {sensor_graph.zip,raw_data.zip}
mkdir log output

Alterbatively, the datasets can be found as follows:

  • METR-LA and PEMS-BAY: These datasets were released by DCRNN[1]. Data can be found in its GitHub repository, where the sensor graphs are also provided.

  • PEMS03 and PEMS04: These datasets were released by ASTGCN[2] and ASTGNN[3]. Data can also be found in its GitHub repository.

1.2 Data Process

python datasets/raw_data/$DATASET_NAME/generate_training_data.py

Replace $DATASET_NAME with one of METR-LA, PEMS-BAY, PEMS04, PEMS08.

The processed data is placed in datasets/$DATASET_NAME.

1.3 Training the Model

python main.py --dataset=$DATASET_NAME

E.g., python main.py --dataset=METR-LA.

1.4 Load a Pretrained Model

Check the config files of the dataset in configs/$DATASET_NAME, and set the startup args to test mode.

Download the pre-trained model files into the output folder and run the command line in 1.3.

1.5 Results and Visualization

TheTable

Visualization

2. More QA?

Any issues are welcome.

3. To Do

  • Add results and visualization in this readme.
  • Add BaiduYun links.
  • Add pretrained model.
  • 添加中文README

References

[1] Atwood J, Towsley D. Diffusion-convolutional neural networks[J]. Advances in neural information processing systems, 2016, 29: 1993-2001.

[2] Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 922-929.

[3] Guo S, Lin Y, Wan H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021.

Owner
S22
实事求是
S22
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022