[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Overview

Mining Latent Classes for Few-shot Segmentation

Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao.

This codebase contains baseline of our paper Mining Latent Classes for Few-shot Segmentation, ICCV 2021 Oral.

Several key modifications to the simple yet effective metric learning framework:

  • Remove the final residual stage in ResNet for stronger generalization
  • Remove the final ReLU for feature matching
  • Freeze all the BatchNorms from ImageNet pretrained model

Environment

This codebase was tested with the following environment configurations.

  • Ubuntu 18.04
  • CUDA 11.2
  • Python 3.7.4
  • PyTorch 1.6.0
  • Pillow, numpy, torchvision, tqdm
  • Two NVIDIA V100 GPUs

Getting Started

Data Preparation

Pretrained model: ResNet-50 | ResNet-101

Dataset: Pascal JPEGImages | SegmentationClass | ImageSets

File Organization

├── ./pretrained
    ├── resnet50.pth
    └── resnet101.pth
    
├── [Your Pascal Path]
    ├── JPEGImages
    │   ├── 2007_000032.jpg
    │   └── ...
    │
    ├── SegmentationClass
    │   ├── 2007_000032.png
    │   └── ...
    │
    └── ImageSets
        ├── train.txt
        └── val.txt

Run the Code

CUDA_VISIBLE_DEVICES=0,1 python -W ignore main.py \
  --dataset pascal --data-root [Your Pascal Path] \
  --backbone resnet50 --fold 0 --shot 1

You may change the backbone from resnet50 to resnet101, change the fold from 0 to 1/2/3, or change the shot from 1 to 5 for other settings.

Performance and Trained Models

Here we report the performance of our modified baseline on Pascal. You can click on the numbers to download corresponding trained models.

The training time is measured on two V100 GPUs. Compared with other works, our method is efficient to train.

Setting Backbone Training time / fold Fold 0 Fold 1 Fold 2 Fold 3 Mean
1-shot ResNet-50 40 minutes 54.9 66.5 61.7 48.3 57.9
1-shot ResNet-101 1.1 hours 57.2 68.5 61.3 53.3 60.1
5-shot ResNet-50 2.3 hours 61.6 70.3 70.5 56.4 64.7
5-shot ResNet-101 3.5 hours 64.2 74.0 71.5 61.3 67.8

Acknowledgement

We thank PANet, PPNet, PFENet and other FSS works for their great contributions.

Citation

If you find this project useful for your research, please consider citing:

@inproceedings{yang2021mining,
  title={Mining Latent Classes for Few-shot Segmentation},
  author={Yang, Lihe and Zhuo, Wei and Qi, Lei and Shi, Yinghuan and Gao, Yang},
  booktitle={ICCV},
  year={2021}
}
Owner
Lihe Yang
Master student at Nanjing University, Computer Vision
Lihe Yang
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022