GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Related tags

Deep LearningGLaRA
Overview

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

This paper is the code release of the paper GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition, which is accepted at EACL-2021.

This work aims at improving weakly supervised named entity reconigtion systems by automatically finding new rules that are helpful at identifying entities from data. The idea is, as shown in the following figure, if we know rule1: associated with->Disease is an accurate rule and it is semantically related to rule2: cause of->Disease, we should be able use rule2 as another accurate rule for identifying Disease entities.

The overall workflow is illustrated as below, for a specific type of rules, we frist extract a large set of possible rule candidates from unlabeled data. Then the rule candidates are constructed into a graph where each node represents a candidate and edges are built based on the semantic similarties of the node pairs. Next, by manually identifying a small set of nodes as seeding rules, we use a graph-based neural network to find new rules by propaging the labeling confidence from seeding rules to other candidates. Finally, with the newly learned rules, we follow weak supervision to create weakly labeled dataset by creating a labeling matrix on unlabeled data and training a generative model. Finally, we train our final NER system with a discriminative model.

Installation

  1. Install required libraries
  1. Download dataset
    • Once LinkedHMM is successfully installed, move all the files in "data" fold under LinkedHMM directory to the "datasets" folder in the currect directory.
    • Download pretrained sciBERT embeddings here: https://huggingface.co/allenai/scibert_scivocab_uncased, and move it to the folder pretrained-model.
  • For saving the time of reading data, we cache all datasets into picked objects: python cache_datasets.py

Run experiments

The experiments on the three data sets are independently conducted. To run experiments for one task, (i.e NCBI), please go to folder code-NCBI. For the experiments on other datasets, namely BC5CDR and LaptopReview, please go to folder code-BC5CDR and code-LaptopReview and run the same commands.

  1. Extract candidate rules for each type and cache embeddings, edges, seeds, etc.
  • run python prepare_candidates_and_embeddings.py --dataset NCBI --rule_type SurfaceForm to cache candidate rules, embeddings, edges, etc., for SurfaceForm rule.
  • other rule types are Suffix, Prefix, InclusivePreNgram, ExclusivePreNgram, InclusivePostNgram, ExclusivePostNgram, and Dependency.
  • all cached data will be save into the folder cached_seeds_and_embeddings.
  1. Train propogation and find new rules.
  • run python propagate.py --dataset NCBI --rule_type SurfaceForm to learn SurfaceForm rules.
  • other rules are Suffix, Prefix, InclusivePreNgram, ExclusivePreNgram, InclusivePostNgram, ExclusivePostNgram, and Dependency.
  1. Train LinkedHMM generative model
  • run python train_generative_model.py --dataset NCBI --use_SurfaceForm --use_Suffix --use_Prefix --use_InclusivePostNgram --use_Dependency.
  • The argument --use_[TYPE] is used to activate a specific type of rules.
  1. Train discriminative model
  • run create_dataset_for_bert_tagger.py to prepare dataset for training the tagging model. (make sure to change the dataset and data_name variables in the file first.)
  • run train_discriminative_model.py

References

[1] Esteban Safranchik, Shiying Luo, Stephen H. Bach. Weakly Supervised Sequence Tagging from Noisy Rules.

Owner
Xinyan Zhao
I am a Ph.D. Student in School of Information University of Michigan.
Xinyan Zhao
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022