Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

Related tags

Deep LearningUPMT
Overview

UPMT

Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

See main.py as an example:

from model import PopMusicTransformer
import argparse
import tensorflow as tf
import os
import pickle
import numpy as np
from glob import glob
parser = argparse.ArgumentParser(description='')
parser.add_argument('--prompt_path', dest='prompt_path', default='./test/prompt/test_input.mid', help='path of prompt')
parser.add_argument('--output_path', dest='output_path', default='./test/output/test_generate.mid', help='path of the output')
parser.add_argument('--favorite_path', dest='favorite_path', default='./test/favorite/test_favorite.mid', help='path of favorite')
parser.add_argument('--trainingdata_path', dest='trainingdata_path', default='./test/data/training.pickle', help='path of favorite training data')
parser.add_argument('--output_checkpoint_folder', dest='output_checkpoint_folder', default='./test/checkpoint/', help='path of favorite')
parser.add_argument('--alpha', default=0.1, help='weight of events')
parser.add_argument('--temperature', default=300, help='sampling temperature')
parser.add_argument('--topk', default=5, help='sampling topk')
parser.add_argument('--smpi', default=[-2,-2,-1,-2,-2,2,2,5], help='signature music pattern interval')

parser.add_argument('--type', dest='type', default='generateno', help='generateno or pretrain or prepare')

args = parser.parse_args()


def main(_):

    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    with tf.Session(config=tfconfig) as sess:
        if args.type == 'prepare':
            midi_paths = glob('./test/favorite'+'/*.mid')
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.prepare_data(
                        midi_paths=midi_paths)    
        elif args.type == 'generateno':
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.generate_noteon(
                        temperature=float(args.temperature),
                        topk=int(args.topk),
                        output_path=args.output_path,  
                        smpi= np.array(args.smpi),
                        prompt=args.prompt_path)
        elif args.type =='pretrain':
            training_data = pickle.load(open(args.trainingdata_path,"rb"))
            if not os.path.exists(args.output_checkpoint_folder):
                os.mkdir(args.output_checkpoint_folder)
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=True)
            model.finetune(
                training_data=training_data,
                alpha=float(args.alpha),
                favoritepath=args.favorite_path,
                output_checkpoint_folder=args.output_checkpoint_folder)

if __name__ == '__main__':
    tf.app.run()

Thanks https://github.com/YatingMusic/remi for the open source.

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022