Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Overview

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks

DOI License: MIT

This is the code for reproducing the results of the paper Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks accepted at AAAI 2022.

Requirements

All Python packages required are listed in requirements.txt. To install these packages, run the following commands.

conda create -n preempt-robust python=3.7
conda activate preempt-robust
pip install -r requirements.txt

Preparing CIFAR-10 data

Download the CIFAR-10 dataset from https://www.cs.toronto.edu/~kriz/cifar.html and place it a directory ./data.

Pretrained models

We provide pre-trained checkpoints for adversarially trained model and preemptively robust model.

  • adv_l2: ℓ2 adversarially trained model with early stopping
  • adv_linf: ℓ adversarially trained model with early stopping
  • preempt_robust_l2: ℓ2 preemptively robust model
  • preempt_robust_linf: ℓ preemptively robust model

We also provide a pre-trained checkpoint for a model with randomized smoothing.

  • gaussian_0.1: model trained with additive Gaussian noises (σ = 0.1)

Shell scripts for downloading these checkpoint are located in ./checkpoints/cifar10/wideresent/[train_type]/download.sh. You can run each script to download a checkpoint named ckpt.pt. To download all the checkpoints, run download_all_ckpts.sh. You can delete all the checkpoints by running delete_all_ckpts.sh.

Preemptively robust training

To train preemptively robust classifiers, run the following commands.

1. ℓ2 threat model, ε = δ = 0.5

python train.py --config ./configs/cifar10_l2_model.yaml

2. ℓ threat model, ε = δ = 8/255

python train.py --config ./configs/cifar10_linf_model.yaml

Preemptive robustification and reconstruction algorithms

To generate preepmtive roobust images and their reconstruction, run the following commands. You can specify the classifier used for generating preemptively robust images by changing train_type in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python robustify.py --config ./configs/cifar10_l2.yaml
python reconstruct.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python robustify.py --config ./configs/cifar10_linf.yaml
python reconstruct.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python robustify.py --config ./configs/cifar10_l2_rand.yaml
python reconstruct.py --config ./configs/cifar10_l2_rand.yaml

Grey-box attacks on preemptively robustified images

To conduct grey-box attacks on preemptively robustified images, run the following commands. You can specify attack type by changing attack_type_eval in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python attack_grey_box.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python attack_grey_box.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python attack_grey_box.py --config ./configs/cifar10_l2_rand.yaml

White-box attacks on preemptively robustified images

To conduct white-box attacks on preemptively robustified images, run the following commands. You can specify attack type and its perturbation size by changing attack_type_eval and wbox_epsilon_p in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python attack_white_box.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python attack_white_box.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python attack_white_box.py --config ./configs/cifar10_l2_rand.yaml
You might also like...
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

PyTorch Implementation for AAAI'21
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Official Pytorch implementation of
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

Releases(v1.0)
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022