PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Overview

Neural Scene Flow Fields

PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

[Project Website] [Paper] [Video]

Dependency

The code is tested with Python3, Pytorch >= 1.6 and CUDA >= 10.2, the dependencies includes

  • configargparse
  • matplotlib
  • opencv
  • scikit-image
  • scipy
  • cupy
  • imageio.
  • tqdm

Video preprocessing

  1. Download nerf_data.zip from link, an example input video with SfM camera poses and intrinsics estimated from COLMAP (Note you need to use COLMAP "colmap image_undistorter" command to undistort input images to get "dense" folder as shown in the example, this dense folder should include "images" and "sparse" folders).

  2. Download single view depth prediction model "model.pt" from link, and put it on the folder "nsff_scripts".

  3. Run the following commands to generate required inputs for training/inference:

    # Usage
    cd nsff_scripts
    # create camera intrinsics/extrinsic format for NSFF, same as original NeRF where it uses imgs2poses.py script from the LLFF code: https://github.com/Fyusion/LLFF/blob/master/imgs2poses.py
    python save_poses_nerf.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/"
    # Resize input images and run single view model
    python run_midas.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/" --input_w 640 --input_h 360 --resize_height 288
    # Run optical flow model (for easy setup and Pytorch version consistency, we use RAFT as backbond optical flow model, but should be easy to change to other models such as PWC-Net or FlowNet2.0)
    ./download_models.sh
    python run_flows_video.py --model models/raft-things.pth --data_path /home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/ --epi_threhold 1.0 --input_flow_w 768 --input_semantic_w 1024 --input_semantic_h 576

Rendering from an example pretrained model

  1. Download pretraind model "kid-running_ndc_5f_sv_of_sm_unify3_F00-30.zip" from link. Unzipping and putting it in the folder "nsff_exp/logs/kid-running_ndc_5f_sv_of_sm_unify3_F00-30/360000.tar".

Set datadir in config/config_kid-running.txt to the root directory of input video. Then go to directory "nsff_exp":

   cd nsff_exp
  1. Rendering of fixed time, viewpoint interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_bt --target_idx 10

By running the example command, you should get the following result: Alt Text

  1. Rendering of fixed viewpoint, time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_lockcam_slowmo --target_idx 8

By running the example command, you should get the following result: Alt Text

  1. Rendering of space-time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_slowmo_bt  --target_idx 10

By running the example command, you should get the following result: Alt Text

Training

  1. In configs/config_kid-running.txt, modifying expname to any name you like (different from the original one), and running the following command to train the model:
    python run_nerf.py --config configs/config_kid-running.txt

The per-scene training takes ~2 days using 2 Nvidia V100 GPUs.

  1. Several parameters in config files you might need to know for training a good model
  • N_samples: in order to render images with higher resolution, you have to increase number sampled points
  • start_frame, end_frame: indicate training frame range. The default model usually works for video of 1~2s. Training on longer frames can cause oversmooth rendering. To mitigate the effect, you can increase the capacity of the network by increasing netwidth (but it can drastically increase training time and memory usage).
  • decay_iteration: number of iteartion in initialization stage. Data-driven losses will decay every 1000*decay_iteration steps. It's usually good to match decay_iteration to the number of training frames.
  • no_ndc: our current implementation only supports reconstruction in NDC space, meaning it only works for forward-facing scene like original NeRF. But it should be not hard to adapt to euclidean space.
  • use_motion_mask, num_extra_sample: whether to use estimated coarse motion segmentation mask to perform hard-mining sampling during initialization stage, and how many extra samples during initialization stage.
  • w_depth, w_optical_flow: weight of losses for single-view depth and geometry consistency priors described in the paper
  • w_cycle: weights of scene flow cycle consistency loss
  • w_sm: weight of scene flow smoothness loss
  • w_prob_reg: weight of disocculusion weight regularization

Evaluation on the Dynamic Scene Dataset

  1. Download Dynamic Scene dataset "dynamic_scene_data_full.zip" from link

  2. Download pretrained model "dynamic_scene_pretrained_models.zip" from link, unzip and put them in the folder "nsff_exp/logs/"

  3. Run the following command for each scene to get quantitative results reported in the paper:

   # Usage: configs/config_xxx.txt indicates each scene name such as config_balloon1-2.txt in nsff/configs
   python evaluation.py --config configs/config_xxx.txt
  • Note: you have to use modified LPIPS implementation included in this branch in order to measure LIPIS error for dynamic region only as described in the paper.

Acknowledgment

The code is based on implementation of several prior work:

License

This repository is released under the MIT license.

Citation

If you find our code/models useful, please consider citing our paper:

@article{li2020neural,
  title={Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes},
  author={Li, Zhengqi and Niklaus, Simon and Snavely, Noah and Wang, Oliver},
  journal={arXiv preprint arXiv:2011.13084},
  year={2020}
}
Owner
Zhengqi Li
CS Ph.D. student at Cornell University/Cornell Tech
Zhengqi Li
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022