BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

Related tags

Deep LearningBADet
Overview

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

As of Apr. 17th, 2021, 1st place in KITTI BEV detection leaderboard and on par performance on KITTI 3D detection leaderboard. The detector can run at 7.1 FPS.

Authors: Rui Qian, Xin Lai, Xirong Li

[arXiv] [elsevier]

Citation

If you find this code useful in your research, please consider citing our work:

@InProceedings{qian2022pr,
author = {Rui Qian and Xin Lai and Xirong Li},
title = {BADet: Boundary-Aware 3D Object Detection from Point Clouds},
booktitle = {Pattern Recognition (PR)},
month = {January},
year = {2022}
}
@misc{qian20213d,
title={3D Object Detection for Autonomous Driving: A Survey}, 
author={Rui Qian and Xin Lai and Xirong Li},
year={2021},
eprint={2106.10823},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Updates

2021-03-17: The performance (using 40 recall poisitions) on test set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:98.75, 95.61, 90.64
bev  AP:95.23, 91.32, 86.48 
3d   AP:89.28, 81.61, 76.58 
aos  AP:98.65, 95.34, 90.28 

Introduction

model Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.

Dependencies

  • python3.5+
  • pytorch (tested on 1.1.0)
  • opencv
  • shapely
  • mayavi
  • spconv (v1.0)

Installation

  1. Clone this repository.
  2. Compile C++/CUDA modules in mmdet/ops by running the following command at each directory, e.g.
$ cd mmdet/ops/points_op
$ python3 setup.py build_ext --inplace
  1. Setup following Environment variables, you may add them to ~/.bashrc:
export NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so
export NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so
export NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice
export LD_LIBRARY_PATH=/home/qianrui/anaconda3/lib/python3.7/site-packages/spconv;

Data Preparation

  1. Download the 3D KITTI detection dataset from here. Data to download include:

    • Velodyne point clouds (29 GB): input data to VoxelNet
    • Training labels of object data set (5 MB): input label to VoxelNet
    • Camera calibration matrices of object data set (16 MB): for visualization of predictions
    • Left color images of object data set (12 GB): for visualization of predictions
  2. Create cropped point cloud and sample pool for data augmentation, please refer to SECOND.

  3. Split the training set into training and validation set according to the protocol here.

  4. You could run the following command to prepare Data:

$ python3 tools/create_data.py

[email protected]:~/qianrui/kitti$ tree -L 1
data_root = '/home/qr/qianrui/kitti/'
├── gt_database
├── ImageSets
├── kitti_dbinfos_train.pkl
├── kitti_dbinfos_trainval.pkl
├── kitti_infos_test.pkl
├── kitti_infos_train.pkl
├── kitti_infos_trainval.pkl
├── kitti_infos_val.pkl
├── train.txt
├── trainval.txt
├── val.txt
├── test.txt
├── training   <-- training data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced
└── testing  <--- testing data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced

Pretrained Model

You can download the pretrained model [Model][Archive], which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance (using 11 recall poisitions) on validation set is as follows:

[40, 1600, 1408]
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 3769/3769, 7.1 task/s, elapsed: 533s, ETA:     0s
Car [email protected], 0.70, 0.70:
bbox AP:98.27, 90.22, 89.66
bev  AP:90.59, 88.85, 88.09
3d   AP:90.06, 85.75, 78.98
aos  AP:98.18, 89.98, 89.25
Car [email protected], 0.50, 0.50:
bbox AP:98.27, 90.22, 89.66
bev  AP:98.31, 90.21, 89.73
3d   AP:98.20, 90.11, 89.61
aos  AP:98.18, 89.98, 89.25

Quick demo

You could run the following command to evaluate the pretrained model:

cd mmdet/tools
# vim ../configs/car_cfg.py(modify score_thr=0.4, score_thr=0.3 for val split and test split respectively.)
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/epoch_50.pth
Model Archive Parameters Moderate(Car) Pretrained Model Predicts
BADet(val) [Link] 44.2 MB 86.21% [icloud drive] [Results]
BADet(test) [Link] 44.2 MB 81.61% [icloud drive] [Results]

Training

To train the BADet with single GPU, run the following command:

cd mmdet/tools
python3 train.py ../configs/car_cfg.py

Inference

To evaluate the model, run the following command:

cd mmdet/tools
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/latest.pth

Acknowledgement

The code is devloped based on mmdetection, some part of codes are borrowed from SA-SSD, SECOND, and PointRCNN.

Contact

If you have questions, you can contact [email protected].

Owner
Rui Qian
Rui Qian
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022