MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Related tags

Deep LearningMVS2D
Overview

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Project Page | Paper


drawing

If you find our work useful for your research, please consider citing our paper:

@article{DBLP:journals/corr/abs-2104-13325,
  author    = {Zhenpei Yang and
               Zhile Ren and
               Qi Shan and
               Qixing Huang},
  title     = {{MVS2D:} Efficient Multi-view Stereo via Attention-Driven 2D Convolutions},
  journal   = {CoRR},
  volume    = {abs/2104.13325},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13325},
  eprinttype = {arXiv},
  eprint    = {2104.13325},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13325.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

✏️ Changelog

Nov 27 2021

  • Initial release. Note that our released code achieve improved results than those reported in the initial arxiv pre-print. In addition, we include the evaluation on DTU dataset. We will update our paper soon.

⚙️ Installation

Click to expand

The code is tested with CUDA10.1. Please use following commands to install dependencies:

conda create --name mvs2d python=3.7
conda activate mvs2d

pip install -r requirements.txt

The folder structure should looks like the following if you have downloaded all data and pretrained models. Download links are inside each dataset tab at the end of this README.

.
├── configs
├── datasets
├── demo
├── networks
├── scripts
├── pretrained_model
│   ├── demon
│   ├── dtu
│   └── scannet
├── data
│   ├── DeMoN
│   ├── DTU_hr
│   ├── SampleSet
│   ├── ScanNet
│   └── ScanNet_3_frame_jitter_pose.npy
├── splits
│   ├── DeMoN_samples_test_2_frame.npy
│   ├── DeMoN_samples_train_2_frame.npy
│   ├── ScanNet_3_frame_test.npy
│   ├── ScanNet_3_frame_train.npy
│   └── ScanNet_3_frame_val.npy

🎬 Demo

Click to expand

After downloading the pretrained models for ScanNet, try to run following command to make a prediction on a sample data.

python demo.py --cfg configs/scannet/release.conf

The results are saved as demo.png

Training & Testing

We use 4 Nvidia V100 GPU for training. You may need to modify 'CUDA_VISIBLE_DEVICES' and batch size to accomodate your GPU resources.

ScanNet

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗 noisy pose 🔗

Training

First download and extract ScanNet training data and split. Then run following command to train our model.

bash scripts/scannet/train.sh

To train the multi-scale attention model, add --robust 1 to the training command in scripts/scannet/train.sh.

To train our model with noisy input pose, add --perturb_pose 1 to the training command in scripts/scannet/train.sh.

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/scannet/test.sh

You should get something like these:

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.059 0.016 0.026 0.157 0.084 0.964 0.995 0.999 0.108 0.079 0.856 0.974 0.996

SUN3D/RGBD/Scenes11

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗

Training

First download and extract DeMoN training data and split. Then run following command to train our model.

bash scripts/demon/train.sh

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/demon/test.sh

You should get something like these:

dataset rgbd: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.082 0.165 0.047 0.440 0.147 0.921 0.939 0.948 0.325 0.284 0.753 0.894 0.933

dataset scenes11: 256

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.046 0.080 0.018 0.439 0.107 0.976 0.989 0.993 0.155 0.058 0.822 0.945 0.979

dataset sun3d: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.099 0.055 0.044 0.304 0.137 0.893 0.970 0.993 0.224 0.171 0.649 0.890 0.969

-> Done!

depth

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.071 0.096 0.033 0.402 0.127 0.938 0.970 0.981 0.222 0.152 0.755 0.915 0.963

DTU

Click to expand

Download

data 🔗 eval data 🔗 pretrained models 🔗

Training

First download and extract DTU training data. Then run following command to train our model.

bash scripts/dtu/test.sh

Testing

First download and extract DTU eval data and pretrained models.

The following command performs three steps together: 1. Generate depth prediction on DTU test set. 2. Fuse depth predictions into final point cloud. 3. Evaluate predicted point cloud. Note that we re-implement the original Matlab Evaluation of DTU dataset using python.

bash scripts/dtu/test.sh

You should get something like these:

Acc 0.4051747996189477
Comp 0.2776021161518006
F-score 0.34138845788537414

Acknowledgement

The fusion code for DTU dataset is heavily built upon from PatchMatchNet

Owner
CS PhD student
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022