CTC segmentation python package

Overview

CTC segmentation

CTC segmentation can be used to find utterances alignments within large audio files.

Installation

  • With pip:
pip install ctc-segmentation
  • From the Arch Linux AUR as python-ctc-segmentation-git using your favourite AUR helper.

  • From source:

git clone https://github.com/lumaku/ctc-segmentation
cd ctc-segmentation
cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx
python setup.py build
python setup.py install --optimize=1 --skip-build

Example Code

  1. prepare_text filters characters not in the dictionary, and generates the character matrix.
  2. ctc_segmentation computes character-wise alignments from CTC activations of an already trained CTC-based network.
  3. determine_utterance_segments converts char-wise alignments to utterance-wise alignments.
  4. In a post-processing step, segments may be filtered by their confidence value.

This code is from asr_align.py of the ESPnet toolkit:

from ctc_segmentation import ctc_segmentation
from ctc_segmentation import CtcSegmentationParameters
from ctc_segmentation import determine_utterance_segments
from ctc_segmentation import prepare_text

# ...

config = CtcSegmentationParameters()
char_list = train_args.char_list

for idx, name in enumerate(js.keys(), 1):
    logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
    batch = [(name, js[name])]
    feat, label = load_inputs_and_targets(batch)
    feat = feat[0]
    with torch.no_grad():
        # Encode input frames
        enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0)
        # Apply ctc layer to obtain log character probabilities
        lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
    # Prepare the text for aligning
    ground_truth_mat, utt_begin_indices = prepare_text(
        config, text[name], char_list
    )
    # Align using CTC segmentation
    timings, char_probs, state_list = ctc_segmentation(
        config, lpz, ground_truth_mat
    )
    # Obtain list of utterances with time intervals and confidence score
    segments = determine_utterance_segments(
        config, utt_begin_indices, char_probs, timings, text[name]
    )
    # Write to "segments" file
    for i, boundary in enumerate(segments):
        utt_segment = (
            f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
            f" {boundary[1]:.2f} {boundary[2]:.9f}\n"
        )
        args.output.write(utt_segment)

After the segments are written to a segments file, they can be filtered with the parameter min_confidence_score. This is minium confidence score in log space as described in the paper. Utterances with a low confidence score are discarded. This parameter may need adjustment depending on dataset, ASR model and language. For the german ASR model, a value of -1.5 worked very well, but for TEDlium, a lower value of about -5.0 seemed more practical.

awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' ${unfiltered} > ${filtered}

Parameters

There are several notable parameters to adjust the working of the algorithm:

  • min_window_size: Minimum window size considered for a single utterance. The current default value should be OK in most cases.

  • Localization: The character set is taken from the model dict, i.e., usually are generated with SentencePiece. An ASR model trained in the corresponding language and character set is needed. For asian languages, no changes to the CTC segmentation parameters should be necessary. One exception: If the character set contains any punctuation characters, "#", or the Greek char "ε", adapt the setting in an instance of CtcSegmentationParameters in segmentation.py.

  • CtcSegmentationParameters includes a blank character. Copy over the Blank character from the dictionary to the configuration, if in the model dictionary e.g. "<blank>" instead of the default "_" is used. If the Blank in the configuration and in the dictionary mismatch, the algorithm raises an IndexError at backtracking.

  • If replace_spaces_with_blanks is True, then spaces in the ground truth sequence are replaces by blanks. This option is enabled by default and improves compability with dictionaries with unknown space characters.

  • To align utterances with longer unkown audio sections between them, use blank_transition_cost_zero (default: False). With this option, the stay transition in the blank state is free. A transition to the next character is only consumed if the probability to switch is higher. In this way, more time steps can be skipped between utterances. Caution: in combination with replace_spaces_with_blanks == True, this may lead to misaligned segments.

Two parameters are needed to correctly map the frame indices to a time stamp in seconds:

  • subsampling_factor: If the encoder sub-samples its input, the number of frames at the CTC layer is reduced by this factor. A BLSTMP encoder with subsampling 1_2_2_1_1 has a subsampling factor of 4.
  • frame_duration_ms: This is the non-overlapping duration of a single frame in milliseconds (the inverse of frames per millisecond). Note: if fs is set, then frame_duration_ms is ignored.

But not all ASR systems have subsampling. If you want to directly use the sampling rate:

  1. For a given sample rate, say, 16kHz, set fs=16000.
  2. Then set the subsampling_factor to the number of sample points on a single CTC-encoded frame. In default ASR systems, this can be calculated from the hop length of the windowing times encoder subsampling factor. For example, if the hop length is 128, and the subsampling factor in the encoder is 4, then set subsampling_factor=512.

How it works

1. Forward propagation

Character probabilites from each time step are obtained from a CTC-based network. With these, transition probabilities are mapped into a trellis diagram. To account for preambles or unrelated segments in audio files, the transition cost are set to zero for the start-of-sentence or blank token.

Forward trellis

2. Backtracking

Starting from the time step with the highest probability for the last character, backtracking determines the most probable path of characters through all time steps.

Backward path

3. Confidence score

As this method generates a probability for each aligned character, a confidence score for each utterance can be derived. For example, if a word within an utterance is missing, this value is low.

Confidence score

The confidence score helps to detect and filter-out bad utterances.

Reference

The full paper can be found in the preprint https://arxiv.org/abs/2007.09127 or published at https://doi.org/10.1007/978-3-030-60276-5_27. To cite this work:

@InProceedings{ctcsegmentation,
author="K{\"u}rzinger, Ludwig
and Winkelbauer, Dominik
and Li, Lujun
and Watzel, Tobias
and Rigoll, Gerhard",
editor="Karpov, Alexey
and Potapova, Rodmonga",
title="CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition",
booktitle="Speech and Computer",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="267--278",
abstract="Recent end-to-end Automatic Speech Recognition (ASR) systems demonstrated the ability to outperform conventional hybrid DNN/HMM ASR. Aside from architectural improvements in those systems, those models grew in terms of depth, parameters and model capacity. However, these models also require more training data to achieve comparable performance.",
isbn="978-3-030-60276-5"
}
Owner
Ludwig Kürzinger
Ludwig Kürzinger
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022