《Deep Single Portrait Image Relighting》(ICCV 2019)

Overview

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page]

This is part of the Deep Portrait Relighting project. If you find this project useful, please cite the paper:

@InProceedings{DPR, 
  title={Deep Single Portrait Image Relighting},
  author = {Hao Zhou and Sunil Hadap and Kalyan Sunkavalli and David W. Jacobs},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2019}
}

NOTE:

This code is not optimized and may not be well organized.

Dependences:

3DDFA: https://github.com/cleardusk/3DDFA (download the code and put it in useful_code, follow the instruction to download model and setup the code)

Environment setup:

I use miniconda to setup virtual environment

  • Create a virtual enviroment named RI_render (you can choose your own name): conda create -n RI_render python=3.6
  • Install pytorch: conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -n RI_render
  • Install dlib: conda install -c conda-forge dlib -n RI_render
  • Install opencv: conda install -n RI_render -c conda-forge opencv
  • Install scipy: conda install -n RI_render -c conda-forge scipy
  • Install matplotlib: conda install -n RI_render -c conda-forge matplotlib
  • Install cython: conda install -n RI_render -c anaconda cython
  • Compile 3DDFA as mentioned in the github webpage
  • Compile cython in utils/cython, follow the readme file
  • Install Delaunay Triangulation:
  • Install libigl:
  • Install shtools: https://github.com/SHTOOLS/SHTOOLS
  • Install cvxpy: conda install -c conda-forge cvxpy

Steps for rendering

  1. fitting 3DDFA: run bash run_fit.sh, will generate several files in result: *_3DDFA.png: draw 2D landmark on face *_depth.png: depth image *_detected.txt: detected 2D landmark on faces *_project.txt: projected 3D landmark *.obj: fitted mesh

  2. run bash run_render.sh generate albedo, normal, uv map and semantic segmentation: *_new.obj: obj file for rendering in render: *.png show generate images *.npy show original file of albedo, normal, uv map and semantic segmentation. NOTE: if you can install OpenEXR, you can save npy as .exr file

  3. run bash run_node.sh Apply arap to further align faces in render: generate arap.obj an object of arap algorithm *.node and *.ele temperal files for applying arap

  4. run bash run_warp.sh create warped albedo, normal, semantic segmentation in result/warp:

  5. run bash run_fillHoles.sh remove ear and neck region and fill in holes in generated normal map: create full_normal_faceRegion_faceBoundary_extend.npy and full_normal_faceRegion_faceBoundary_extend.png in result/warp

  6. run bash run_relight.sh relighting faces download our processed bip2017 lighting through (https://drive.google.com/open?id=1l0SiR10jBqACiOeAvsXSXAufUtZ-VhxC), change line 155 in script_relighting.py to poit to the lighting folder Apply face semantic segmentation to get skin region of the face: https://github.com/Liusifei/Face_Parsing_2016 save the results in folder face_parsing/ (examples are shown in face_parsing, you can also skip this by adapting the code of script_relighting.py)

Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023