《Deep Single Portrait Image Relighting》(ICCV 2019)

Overview

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page]

This is part of the Deep Portrait Relighting project. If you find this project useful, please cite the paper:

@InProceedings{DPR, 
  title={Deep Single Portrait Image Relighting},
  author = {Hao Zhou and Sunil Hadap and Kalyan Sunkavalli and David W. Jacobs},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2019}
}

NOTE:

This code is not optimized and may not be well organized.

Dependences:

3DDFA: https://github.com/cleardusk/3DDFA (download the code and put it in useful_code, follow the instruction to download model and setup the code)

Environment setup:

I use miniconda to setup virtual environment

  • Create a virtual enviroment named RI_render (you can choose your own name): conda create -n RI_render python=3.6
  • Install pytorch: conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -n RI_render
  • Install dlib: conda install -c conda-forge dlib -n RI_render
  • Install opencv: conda install -n RI_render -c conda-forge opencv
  • Install scipy: conda install -n RI_render -c conda-forge scipy
  • Install matplotlib: conda install -n RI_render -c conda-forge matplotlib
  • Install cython: conda install -n RI_render -c anaconda cython
  • Compile 3DDFA as mentioned in the github webpage
  • Compile cython in utils/cython, follow the readme file
  • Install Delaunay Triangulation:
  • Install libigl:
  • Install shtools: https://github.com/SHTOOLS/SHTOOLS
  • Install cvxpy: conda install -c conda-forge cvxpy

Steps for rendering

  1. fitting 3DDFA: run bash run_fit.sh, will generate several files in result: *_3DDFA.png: draw 2D landmark on face *_depth.png: depth image *_detected.txt: detected 2D landmark on faces *_project.txt: projected 3D landmark *.obj: fitted mesh

  2. run bash run_render.sh generate albedo, normal, uv map and semantic segmentation: *_new.obj: obj file for rendering in render: *.png show generate images *.npy show original file of albedo, normal, uv map and semantic segmentation. NOTE: if you can install OpenEXR, you can save npy as .exr file

  3. run bash run_node.sh Apply arap to further align faces in render: generate arap.obj an object of arap algorithm *.node and *.ele temperal files for applying arap

  4. run bash run_warp.sh create warped albedo, normal, semantic segmentation in result/warp:

  5. run bash run_fillHoles.sh remove ear and neck region and fill in holes in generated normal map: create full_normal_faceRegion_faceBoundary_extend.npy and full_normal_faceRegion_faceBoundary_extend.png in result/warp

  6. run bash run_relight.sh relighting faces download our processed bip2017 lighting through (https://drive.google.com/open?id=1l0SiR10jBqACiOeAvsXSXAufUtZ-VhxC), change line 155 in script_relighting.py to poit to the lighting folder Apply face semantic segmentation to get skin region of the face: https://github.com/Liusifei/Face_Parsing_2016 save the results in folder face_parsing/ (examples are shown in face_parsing, you can also skip this by adapting the code of script_relighting.py)

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022