Vision-and-Language Navigation in Continuous Environments using Habitat

Overview

Vision-and-Language Navigation in Continuous Environments (VLN-CE)

Project WebsiteVLN-CE ChallengeRxR-Habitat Challenge

Official implementations:

  • Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous Environments (paper)
  • Waypoint Models for Instruction-guided Navigation in Continuous Environments (paper, README)

Vision and Language Navigation in Continuous Environments (VLN-CE) is an instruction-guided navigation task with crowdsourced instructions, realistic environments, and unconstrained agent navigation. This repo is a launching point for interacting with the VLN-CE task and provides both baseline agents and training methods. Both the Room-to-Room (R2R) and the Room-Across-Room (RxR) datasets are supported. VLN-CE is implemented using the Habitat platform.

VLN-CE comparison to VLN

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n vlnce python3.6
conda activate vlnce

VLN-CE uses Habitat-Sim 0.1.7 which can be built from source or installed from conda:

conda install -c aihabitat -c conda-forge habitat-sim=0.1.7 headless

Then install Habitat-Lab:

git clone --branch v0.1.7 [email protected]:facebookresearch/habitat-lab.git
cd habitat-lab
# installs both habitat and habitat_baselines
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all

Now you can install VLN-CE:

git clone [email protected]:jacobkrantz/VLN-CE.git
cd VLN-CE
python -m pip install -r requirements.txt

Data

Scenes: Matterport3D

Matterport3D (MP3D) scene reconstructions are used. The official Matterport3D download script (download_mp.py) can be accessed by following the instructions on their project webpage. The scene data can then be downloaded:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 scenes.

Episodes: Room-to-Room (R2R)

The R2R_VLNCE dataset is a port of the Room-to-Room (R2R) dataset created by Anderson et al for use with the Matterport3DSimulator (MP3D-Sim). For details on the porting process from MP3D-Sim to the continuous reconstructions used in Habitat, please see our paper. We provide two versions of the dataset, R2R_VLNCE_v1-2 and R2R_VLNCE_v1-2_preprocessed. R2R_VLNCE_v1-2 contains the train, val_seen, val_unseen, and test splits. R2R_VLNCE_v1-2_preprocessed runs with our models out of the box. It additionally includes instruction tokens mapped to GloVe embeddings, ground truth trajectories, and a data augmentation split (envdrop) that is ported from R2R-EnvDrop. The test split does not contain episode goals or ground truth paths. For more details on the dataset contents and format, see our project page.

Dataset Extract path Size
R2R_VLNCE_v1-2.zip data/datasets/R2R_VLNCE_v1-2 3 MB
R2R_VLNCE_v1-2_preprocessed.zip data/datasets/R2R_VLNCE_v1-2_preprocessed 345 MB

Downloading the dataset:

# R2R_VLNCE_v1-2
gdown https://drive.google.com/uc?id=1YDNWsauKel0ht7cx15_d9QnM6rS4dKUV
# R2R_VLNCE_v1-2_preprocessed
gdown https://drive.google.com/uc?id=18sS9c2aRu2EAL4c7FyG29LDAm2pHzeqQ
Encoder Weights

Baseline models encode depth observations using a ResNet pre-trained on PointGoal navigation. Those weights can be downloaded from here (672M). Extract the contents to data/ddppo-models/{model}.pth.

Episodes: Room-Across-Room (RxR)

Download: RxR_VLNCE_v0.zip

The Room-Across-Room dataset was ported to continuous environments for the RxR-Habitat Challenge hosted at the CVPR 2021 Embodied AI Workshop. The dataset has train, val_seen, val_unseen, and test_challenge splits with both Guide and Follower trajectories ported. The starter code expects files in this structure:

data/datasets
├─ RxR_VLNCE_v0
|   ├─ train
|   |    ├─ train_guide.json.gz
|   |    ├─ train_guide_gt.json.gz
|   |    ├─ train_follower.json.gz
|   |    ├─ train_follower_gt.json.gz
|   ├─ val_seen
|   |    ├─ val_seen_guide.json.gz
|   |    ├─ val_seen_guide_gt.json.gz
|   |    ├─ val_seen_follower.json.gz
|   |    ├─ val_seen_follower_gt.json.gz
|   ├─ val_unseen
|   |    ├─ val_unseen_guide.json.gz
|   |    ├─ val_unseen_guide_gt.json.gz
|   |    ├─ val_unseen_follower.json.gz
|   |    ├─ val_unseen_follower_gt.json.gz
|   ├─ test_challenge
|   |    ├─ test_challenge_guide.json.gz
|   ├─ text_features
|   |    ├─ ...

The baseline models for RxR-Habitat use precomputed BERT instruction features which can be downloaded from here and saved to data/datasets/RxR_VLNCE_v0/text_features/rxr_{split}/{instruction_id}_{language}_text_features.npz.

RxR-Habitat Challenge (RxR Data)

RxR Challenge Teaser GIF

The RxR-Habitat Challenge uses the new Room-Across-Room (RxR) dataset which:

  • contains multilingual instructions (English, Hindi, Telugu),
  • is an order of magnitude larger than existing datasets, and
  • uses varied paths to break a shortest-path-to-goal assumption.

The challenge was hosted at the CVPR 2021 Embodied AI Workshop. While the official challenge is over, the leaderboard remains open and we encourage submissions on this difficult task! For guidelines and access, please visit: ai.google.com/research/rxr/habitat.

Generating Submissions

Submissions are made by running an agent locally and submitting a jsonlines file (.jsonl) containing the agent's trajectories. Starter code for generating this file is provided in the function BaseVLNCETrainer.inference(). Here is an example of generating predictions for English using the Cross-Modal Attention baseline:

python run.py \
  --exp-config vlnce_baselines/config/rxr_baselines/rxr_cma_en.yaml \
  --run-type inference

If you use different models for different languages, you can merge their predictions with scripts/merge_inference_predictions.py. Submissions are only accepted that contain all episodes from all three languages in the test-challenge split. Starter code for this challenge was originally hosted in the rxr-habitat-challenge branch but is now under continual development in master.

VLN-CE Challenge (R2R Data)

The VLN-CE Challenge is live and taking submissions for public test set evaluation. This challenge uses the R2R data ported in the original VLN-CE paper.

To submit to the leaderboard, you must run your agent locally and submit a JSON file containing the generated agent trajectories. Starter code for generating this JSON file is provided in the function BaseVLNCETrainer.inference(). Here is an example of generating this file using the pretrained Cross-Modal Attention baseline:

python run.py \
  --exp-config vlnce_baselines/config/r2r_baselines/test_set_inference.yaml \
  --run-type inference

Predictions must be in a specific format. Please visit the challenge webpage for guidelines.

Baseline Performance

The baseline model for the VLN-CE task is the cross-modal attention model trained with progress monitoring, DAgger, and augmented data (CMA_PM_DA_Aug). As evaluated on the leaderboard, this model achieves:

Split TL NE OS SR SPL
Test 8.85 7.91 0.36 0.28 0.25
Val Unseen 8.27 7.60 0.36 0.29 0.27
Val Seen 9.06 7.21 0.44 0.34 0.32

This model was originally presented with a val_unseen performance of 0.30 SPL, however the leaderboard evaluates this same model at 0.27 SPL. The model was trained and evaluated on a hardware + Habitat build that gave slightly different results, as is the case for the other paper experiments. Going forward, the leaderboard contains the performance metrics that should be used for official comparison. In our tests, the installation procedure for this repo gives nearly identical evaluation to the leaderboard, but we recognize that compute hardware along with the version and build of Habitat are factors to reproducibility.

For push-button replication of all VLN-CE experiments, see here.

Starter Code

The run.py script controls training and evaluation for all models and datasets:

python run.py \
  --exp-config path/to/experiment_config.yaml \
  --run-type {train | eval | inference}

For example, a random agent can be evaluated on 10 val-seen episodes of R2R using this command:

python run.py --exp-config vlnce_baselines/config/r2r_baselines/nonlearning.yaml --run-type eval

For lists of modifiable configuration options, see the default task config and experiment config files.

Training Agents

The DaggerTrainer class is the standard trainer and supports teacher forcing or dataset aggregation (DAgger). This trainer saves trajectories consisting of RGB, depth, ground-truth actions, and instructions to disk to avoid time spent in simulation.

The RecollectTrainer class performs teacher forcing using the ground truth trajectories provided in the dataset rather than a shortest path expert. Also, this trainer does not save episodes to disk, instead opting to recollect them in simulation.

Both trainers inherit from BaseVLNCETrainer.

Evaluating Agents

Evaluation on validation splits can be done by running python run.py --exp-config path/to/experiment_config.yaml --run-type eval. If EVAL.EPISODE_COUNT == -1, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, each checkpoint will be evaluated one at a time.

Cuda

Cuda will be used by default if it is available. We find that one GPU for the model and several GPUs for simulation is favorable.

SIMULATOR_GPU_IDS: [0]  # list of GPU IDs to run simulations
TORCH_GPU_ID: 0  # GPU for pytorch-related code (the model)
NUM_ENVIRONMENTS: 1  # Each GPU runs NUM_ENVIRONMENTS environments

The simulator and torch code do not need to run on the same device. For faster training and evaluation, we recommend running with as many NUM_ENVIRONMENTS as will fit on your GPU while assuming 1 CPU core per env.

License

The VLN-CE codebase is MIT licensed. Trained models and task datasets are considered data derived from the mp3d scene dataset. Matterport3D based task datasets and trained models are distributed with Matterport3D Terms of Use and under CC BY-NC-SA 3.0 US license.

Citing

If you use VLN-CE in your research, please cite the following paper:

@inproceedings{krantz_vlnce_2020,
  title={Beyond the Nav-Graph: Vision and Language Navigation in Continuous Environments},
  author={Jacob Krantz and Erik Wijmans and Arjun Majundar and Dhruv Batra and Stefan Lee},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
 }

If you use the RxR-Habitat data, please additionally cite the following paper:

@inproceedings{ku2020room,
  title={Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense Spatiotemporal Grounding},
  author={Ku, Alexander and Anderson, Peter and Patel, Roma and Ie, Eugene and Baldridge, Jason},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={4392--4412},
  year={2020}
}
Owner
Jacob Krantz
PhD student at Oregon State University
Jacob Krantz
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022