Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

Related tags

Deep LearningPS-SC
Overview

PS-SC GAN

trav_animation

This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction constraints) introduced in the paper Where and What? Examining Interpretable Disentangled Representations. The code for computing the TPL for model checkpoints from disentanglemen_lib can be found in this repository.

Abstract

Capturing interpretable variations has long been one of the goals in disentanglement learning. However, unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted? A latent code is easily to be interpreted if it would consistently impact a certain subarea of the resulting generated image. We thus propose to learn a spatial mask to localize the effect of each individual latent dimension. On the other hand, interpretability usually comes from latent dimensions that capture simple and basic variations in data. We thus impose a perturbation on a certain dimension of the latent code, and expect to identify the perturbation along this dimension from the generated images so that the encoding of simple variations can be enforced. Additionally, we develop an unsupervised model selection method, which accumulates perceptual distance scores along axes in the latent space. On various datasets, our models can learn high-quality disentangled representations without supervision, showing the proposed modeling of interpretability is an effective proxy for achieving unsupervised disentanglement.

Requirements

  • Python == 3.7.2
  • Numpy == 1.19.1
  • TensorFlow == 1.15.0
  • This code is based on StyleGAN2 which relies on custom TensorFlow ops that are compiled on the fly using NVCC. To test that your NVCC installation is working correctly, run:
nvcc test_nvcc.cu -o test_nvcc -run
| CPU says hello.
| GPU says hello.

Preparing datasets

CelebA. To prepare the tfrecord version of CelebA dataset, first download the original aligned-and-cropped version from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, then use the following code to create tfrecord dataset:

python dataset_tool.py create_celeba /path/to/new_tfr_dir /path/to/downloaded_celeba_dir

For example, the new_tfr_dir can be: datasets/celeba_tfr.

FFHQ. We use the 512x512 version which can be directly downloaded from the Google Drive link using browser. Or the file can be downloaded using the official script from Flickr-Faces-HQ. Put the xxx.tfrecords file into a two-level directory such as: datasets/ffhq_tfr/xxx.tfrecords.

Other Datasets. The tfrecords versions of DSprites and 3DShapes datasets can be produced

python dataset_tool.py create_subset_from_dsprites_npz /path/to/new_tfr_dir /path/to/dsprites_npz

and

python dataset_tool.py create_subset_from_shape3d /path/to/new_tfr_dir /path/to/shape3d_file

See dataset_tool.py for how other datasets can be produced.

Training

architecture

Pretrained models are shared here. To train a model on CelebA with 2 GPUs, run code:

CUDA_VISIBLE_DEVICES=0,1 \
    python run_training_ps_sc.py \
    --result-dir /path/to/results_ps_sc/celeba \
    --data-dir /path/to/datasets \
    --dataset celeba_tfr \
    --metrics fid1k,tpl_small_0.3 \
    --num-gpus 2 \
    --mirror-augment True \
    --model_type ps_sc_gan \
    --C_lambda 0.01 \
    --fmap_decay 1 \
    --epsilon_loss 3 \
    --random_seed 1000 \
    --random_eps True \
    --latent_type normal \
    --batch_size 8 \
    --batch_per_gpu 4 \
    --n_samples_per 7 \
    --return_atts True \
    --I_fmap_base 10 \
    --G_fmap_base 9 \
    --G_nf_scale 6 \
    --D_fmap_base 10 \
    --fmap_min 64 \
    --fmap_max 512 \
    --topk_dims_to_show -1 \
    --module_list '[Const-512, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-id-2]'

Note that for the dataset directory we need to separate the path into --data-dir and --dataset tags. The --model_type tag only specifies the PS-loss, and we need to use the C_spgroup-n_squares-n_codes in the --module_list tag to specify where to insert the Spatial Constriction modules in the generator. The latent traversals and metrics will be logged in the resulting directory. The --C_lambda tag is the hyper-parameter for modulating the PS-loss.

Evaluation

To evaluate a trained model, we can use the following code:

CUDA_VISIBLE_DEVICES=0 \
    python run_metrics.py \
    --result-dir /path/to/evaluate_results_dir \
    --network /path/to/xxx.pkl \
    --metrics fid50k,tpl_large_0.3,ppl2_wend \
    --data-dir /path/to/datasets \
    --dataset celeba_tfr \
    --include_I True \
    --mapping_nodup True \
    --num-gpus 1

where the --include_I is to indicate the model should be loaded with an inference network, and --mapping_nodup is to indicate that the loaded model has no W space duplication as in stylegan.

Generation

We can generate random images, traversals or gifs based on a pretrained model pkl using the following code:

CUDA_VISIBLE_DEVICES=0 \
    python run_generator_ps_sc.py generate-images \
    --network /path/to/xxx.pkl \
    --seeds 0-10 \
    --result-dir /path/to/gen_results_dir

and

CUDA_VISIBLE_DEVICES=0 \
    python run_generator_ps_sc.py generate-traversals \
    --network /path/to/xxx.pkl \
    --seeds 0-10 \
    --result-dir /path/to/traversal_results_dir

and

python run_generator_ps_sc.py \
    generate-gifs \
    --network /path/to/xxx.pkl \
    --exist_imgs_dir git_repo/PS-SC/imgs \
    --result-dir /path/to/results/gif \
    --used_imgs_ls '[sample1.png, sample2.png, sample3.png]' \
    --used_semantics_ls '[azimuth, haircolor, smile, gender, main_fringe, left_fringe, age, light_right, light_left, light_vertical, hair_style, clothes_color, saturation, ambient_color, elevation, neck, right_shoulder, left_shoulder, background_1, background_2, background_3, background_4, right_object, left_object]' \
    --attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \
    --create_new_G True

A gif generation script is provided in the shared pretrained FFHQ folder. The images referred in --used_imgs_ls is provided in the imgs folder in this repository.

Attributes Editing

We can conduct attributes editing with a disentangled model. Currently we only use generated images for this experiment due to the unsatisfactory quality of the real-image projection into disentangled latent codes.

attr_edit

First we need to generate some images and put them into a directory, e.g. /path/to/existing_generated_imgs_dir. Second we need to assign the concepts to meaningful latent dimensions using the --attr2idx_dict tag. For example, if the 23th dimension represents azimuth concept, we add the item {azimuth:23} into the dictionary. Third we need to which images to provide source attributes. We use the --attr_source_dict tag to realize it. Note that there could be multiple dimensions representing a single concept (e.g. in the following example there are 4 dimensions capturing the background information), therefore it is more desirable to ensure the source images provide all these dimensions (attributes) as a whole. A source image can provide multiple attributes. Finally we need to specify the face-source images with --face_source_ls tag. All the face-source and attribute-source images should be located in the --exist_imgs_dir. An example code is as follows:

python run_editing_ps_sc.py \
    images-editing \
    --network /path/to/xxx.pkl \
    --result-dir /path/to/editing_results \
    --exist_imgs_dir git_repo/PS-SC/imgs \
    --face_source_ls '[sample1.png, sample2.png, sample3.png]' \
    --attr_source_dict '{sample1.png: [azimuth, smile]; sample2.png: [age,fringe]; sample3.png: [lighting_right,lighting_left,lighting_vertical]}' \
    --attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \

Accumulated Perceptual Distance with 2D Rotation

fringe_vs_background

If a disentangled model has been trained, the accumulated perceptual distance figures shown in Section 3.3 (and Section 8 in the Appendix) can be plotted using the model checkpoint with the following code:

# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
    python plot_latent_space.py \
    plot-rot-fn \
    --network /path/to/xxx.pkl \
    --seeds 1-10 \
    --latent_pair 19_5 \
    --load_gan True \
    --result-dir /path/to/acc_results/rot_19_5

The 2D latent traversal grid can be presented with code:

# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
    python plot_latent_space.py \
    generate-grids \
    --network /path/to/xxx.pkl \
    --seeds 1-10 \
    --latent_pair 19_5 \
    --load_gan True \
    --result-dir /path/to/acc_results/grid_19_5

Citation

@inproceedings{Xinqi_cvpr21,
author={Xinqi Zhu and Chang Xu and Dacheng Tao},
title={Where and What? Examining Interpretable Disentangled Representations},
booktitle={CVPR},
year={2021}
}
Owner
Xinqi/Steven Zhu
Xinqi/Steven Zhu
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022