Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Overview

Introduction

This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as inspiration for future restructuring of the matplotlib documentation. Plus, I have some ideas of how to improve this tutorial.

Please fork and contribute back improvements! Feel free to use this tutorial for conferences and other opportunities for training.

The tutorial can be viewed on nbviewer:

Installation

All you need is matplotlib (v1.5 or greater) and jupyter installed. You can use your favorite Python package installer for this:

conda install matplotlib jupyter
git clone https://github.com/matplotlib/AnatomyOfMatplotlib.git
cd AnatomyOfMatplotlib
jupyter notebook

A browser window should appear and you can verify that everything works as expected by clicking on the Test Install.ipynb notebook. There, you will see a "code cell" that you can execute. Run it, and you should see a very simple line plot, indicating that all is well.

Comments
  • Updated the categorical example

    Updated the categorical example

    switched code in example to:

    data = [('apples', 2), ('oranges', 3), ('peaches', 1)]
    fruit, value = zip(*data)
    
    fig, ax = plt.subplots()
    ax.bar(fruit, value, align='center', color='gray')
    plt.show()
    
    opened by story645 7
  • Interactive example demo

    Interactive example demo

    This example is inspired from my severe usage of MATLAB overlay plotting where I plot on a figure and based on its distribution/look I do some operation in backend like moving the image to another directory etc. Hoping this example would become handy for someone like me(who moved from MATLAB plotting)
    Discussion : Twitter Link

    opened by nithinraok 6
  • Fixes #26

    Fixes #26

    • /mpl-data/sample_data/axes_grid folder appears to no longer exists as of matplotlib v2.2.2
    • added /assets folder in repo containing dependent numpy pickle, 'bivariate_normal.npy' file
    • revised load of data in AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb to reflect this change
    • tested successfully with matplotlib v2.2.2 and python v3.6.6
    opened by ggodreau 4
  • Add knot to Ugly Tie shape

    Add knot to Ugly Tie shape

    Added geometry to the Ugly Tie polygon to look like a knot.

    It remains a single polygon so color will affect both visible parts.

    At large zooms/resolutions a connection between the right side of the knot and the main tie is visible because the points on right side of the knot are not perfectly in-line with the upper right corner of the tie where the two larger parts of the shape are visible. If this becomes an issue, doing some math to find evenly dividing, aligned points near the current values would make the connecting section of the polygon zero width.

    opened by TheAtomicOption 3
  • New plotting overview

    New plotting overview

    I realize this is a bit last-minute and a big change, but I really feel like we were missing a good overview of the various plotting methods.

    I've added a new Part 2 (and renamed the other sections) to cover this: http://nbviewer.ipython.org/url/geology.beer/scipy2015/tutorial/AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb

    I've tried to make a lot of nice summary images of the most commonly-used plotting methods. The "full" gallery can be very overwhelming, so it's useful to give people a condensed version. Also, these

    80% of the new Part 2 is just quickly looking those images so that people are vaguely aware of what's out there. The code to generate them is also there to serve as an example.

    The new section only goes over bar, fill_between and imshow in more detail. It's not anywhere near as long as it looks at first glance.

    opened by joferkington 3
  • Convert to new ipynb format

    Convert to new ipynb format

    The ipython notebook format has changed slightly in recent versions. Notebooks in the old format are automatically converted when they're opened with a more recent version, but I wanted to go ahead and commit the new format versions.

    Otherwise the diffs will be very difficult to read.

    I also added a .gitignore to ignore the hidden checkpoint folder IPython adds, if ipython notebook is run from the source directory.

    opened by joferkington 3
  • imshow color bar

    imshow color bar

    Hello matplotlib developers,

    I was watching the Youtube recording: Anatomy of Matplotlib from SciPy 2018, and I have a question about AnatomyOfMatplotlib/solutions/2.2-vmin_vmax_imshow_and_colorbars.py

    From line 17 to 18...

    for ax, data in zip(axes, [data1, data2, data3]): im = ax.imshow(data, vmin=0, vmax=3, interpolation='nearest')

    I am assuming data3 has bigger values, followed by data2 and data2, since data3 is multiplied by 3. Suppose if I switch the order of the list in line 17 from:

    for ax, data in zip(axes, [data1, data2, data3]):

    to:

    for ax, data in zip(axes, [data3, data2, data1]):

    So, the last im object would data1 which has a 10 by 10 array with max value of 1. Since we are giving the last im object to make the colorbar, would that mean the range color bar spans from 0 to around 1? Or does matplotlib somehow manage to look at all three plotted imshows and perceive that the maximum value amongst the three imshows is around 3?

    Thank you!

    opened by ZarulHanifah 2
  • Chapter 2 subsec colorbars example data missing

    Chapter 2 subsec colorbars example data missing

    Seems like the example data used in chapter 2 at the colorbar example is no longer supported as of py 3.1. bivariate_normal.npy is not in any folder and has apparantly been discontinued.

    opened by Nafalem231 2
  • Overhaul of Part 1

    Overhaul of Part 1

    First off, IPython/Jupyter has recently had a .ipynb format change, so these diffs are rather messy. If I'd thought about it more, I would have made that a separate commit, but I didn't realize until edits were underway.

    At any rate, I've changed Part1 rather significantly. I pruned some things out and expanded others. I'm intending to add another section detailing basic categories of plotting functions, so I removed several of the references to those in this section.

    Even after these changes, Part1 is still rather long. I might split it (particularly the part after the second exercise and before the third) into another section.

    At any rate hopefully you can see where I'm going with this. Thanks, and looking forward to teaching here in a few weeks!

    opened by joferkington 1
  • from __future__ import print_function so print works same for Python 2&3

    from __future__ import print_function so print works same for Python 2&3

    Just finished going through the notebooks with Python3 and everything worked fine except for having to manually modify all the print statements. Figured it could be made to seamlessly work with both Python 2 and 3 by simply using a from __future__ import print_function.

    opened by jarthurgross 1
  • Fix some typos, and cleared cell outputs.

    Fix some typos, and cleared cell outputs.

    Also threw out some extraneous sentences. Keep things simple and straight-forward. Resist the temptation to reveal everything at once. I will leave this up for a little bit for comment and then merge later today.

    opened by WeatherGod 0
  • Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Backend is no longer necessary IMO. Using a backend results in the following error on Jupyter.

    Javascript Error: IPython is not defined
    

    Also adding %matplotlib inline before importing matplotlib resolves the displaying of graphs.

    Should I fix them in the notebooks and send a PR?

    Thanks.

    opened by hasibzunair 8
  • make examples progressive

    make examples progressive

    In part 2, the example is too much to do at once. Rather, it would make sense to build up that example as more is taught. Perhaps a new feature for IPython notebooks would be useful (floating cells?)

    opened by WeatherGod 2
Releases(v2.0)
  • v2.0(Jul 25, 2014)

Owner
Matplotlib Developers
Matplotlib Developers
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022